Bipartite and multipartite systems

A system may have two components described by two Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2}. Then the bipartite system is represented by $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$. A general state in \mathcal{H} has the form

$$
|x\rangle=\sum_{i, j} c_{i j}\left|e_{1, i}\right\rangle \otimes\left|e_{2, j}\right\rangle \quad \text { with } \sum_{i, j}\left|c_{i j}\right|^{2}=1,
$$

where $\left\{\left|e_{r, 1}\right\rangle,\left|e_{r, 2}\right\rangle, \ldots\right\}$ is an orthonormal basis for \mathcal{H}_{r} with $r \in$ $\{1,2\}$.

Then $\left\{\left|e_{1, i} e_{2, j}\right\rangle: i=1,2, \ldots, j=1,2, \ldots\right\}$ is an orthonrmal basis for $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$.
Example For example, \mathbb{C}^{2} has orthonormal basis $\{|0\rangle,|1\rangle\}$ with

$$
|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1}
$$

$$
\begin{aligned}
& \underline{a}|0\rangle+1\rangle|1\rangle \\
& \binom{a}{b}
\end{aligned}
$$

Separable states, entangled states, Schmidt decomposition
A state of the form $|x\rangle=\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle$ is a separable state or a tensor product state. Otherwise, it is an entangled state. Example Let

$$
\left.<\binom{a}{b} \times\binom{ c}{d} \right\rvert\,
$$

Question How to detect that it is a tensor state?
Answer Check whether the rows of the matrix $C=$
multiples of each other. If yes, we can write $C=\binom{a_{1}}{a_{2}}\left(\begin{array}{ll}\left.b_{1} b_{2}\right)^{t} & \text { for }\end{array}\right.$ some unit vectors $|u\rangle=\left\langle a_{1}, a_{2}\right)^{t},|v\rangle=\left(b_{1}, b_{2}\right)^{t}$. Then $|x\rangle=|u\rangle \otimes|v\rangle$. If not, $|x\rangle$ is entangle.

Remark Most fates in $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ are entangled states, which are most useful for quantum computing.

$$
\begin{aligned}
&\left.\binom{a_{1}}{a_{2}} \stackrel{\left(b_{1} h_{2}\right)}{=}\right)\binom{a_{a}}{b} \times\binom{ d}{d} \\
&=\left(\frac{a(d)}{b\left(\frac{c}{d}\right)}\right)
\end{aligned}
$$

Theorem Suppose $\mathcal{H}_{1}, \mathcal{H}_{2}$ have finite dimensions, say, m and n. Everystatg $x\rangle$ in $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ admits a Schmidt decomposition

where $s_{j}>0$ are the Schmidt coefficients satisfying $\sum_{j=1}^{r} s_{j}^{2}=1$,) r is the Schmidt number of $|x\rangle,\left\{\left|u_{1}\right\rangle, \ldots,\left|u_{r}\right\rangle\right\}$ is an orthonormal set of \mathcal{H}_{1} and $\left\{\left|v_{1}\right\rangle, \ldots,\left|v_{r}\right\rangle\right\}$ is an orthonormal set of \mathcal{H}_{2}.

Proof. Assume \mathcal{H}_{1} and \mathcal{H}_{2} orthonormal bases $\left.\left\{\left|e_{1,1}, \ldots,\right| e_{1, m}\right\rangle\right\}$ and $\left.\left\{\left|e_{2,1}, \ldots,\right| e_{2, n}\right\rangle\right\}$. Every state has the form
 $C \Rightarrow|u\rangle \otimes|v\rangle$ with $\left.|u\rangle=\sum_{j=1} a_{j}| |_{1, j}\right\rangle$ and $|v\rangle=\sum_{j=1}^{n} b_{j}^{*}\left|e_{2, j}\right\rangle$. Because $\| x\rangle \|=1$, we may assume that $\left(a_{1}, \ldots, a_{m}\right)^{t}$ and $\left(b_{1}, \ldots, b_{n}\right)^{t}$ are unit vectors and so are $|u\rangle,|v\rangle$.

In general, suppose $C=\left[c_{i j}\right]$ has singular decomposition

where $C_{j}=\left|\alpha_{j}\right\rangle\left\langle\beta_{j}\right|$ for $j=1$,
One can then use C_{j} the coefficient matrix of $\left|x_{j}\right\rangle$ to construct tensor state $\left|x_{j}\right\rangle=\left|u_{j}\right\rangle \otimes\left|v_{j}\right\rangle$ so that

Example Suppose $|x\rangle=\sum_{i, j} c_{i j}\left|e_{1, i} e_{2, j}\right\rangle \in \mathbb{C}^{2} \otimes \mathbb{C}^{3}$ with
where

$$
\left(c_{i j}\right)=U D V^{t}=d_{1}\left|\mu_{1}\right\rangle\left\langle v_{1}\right)+d_{2}\left(u_{2}\right\rangle\left\langle v_{2}\right| .
$$

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right), \quad D=\frac{1}{5}\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 3 & 0
\end{array}\right), \quad V=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & -1 \\
0 & \sqrt{2} & 0
\end{array}\right) .
$$

$$
\begin{aligned}
& \left|u_{1}\right\rangle=(1, i)^{t} / \sqrt{2},\left|u_{2}\right\rangle=(1,-i)^{t} / \sqrt{2}, \\
& \left|v_{1}\right\rangle=(1,1,0)^{t} / \sqrt{2},\left|v_{2}\right\rangle=(0,0,1)^{t} .
\end{aligned}
$$

Remark Extending the results to $\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{k}$ for $k \geq 3$ is an open problem.

No-cloning theorem

Theorem (Wootters and Zurek) An unknown quantum system cannot be cloned by unitary transformations.

$$
\binom{g}{b} \propto\left(\begin{array}{l}
a \\
b \\
b
\end{array}\right)
$$

Proof. Suppose there would exist a unitary transformation U that
makes a clone of a quantum system. Namely, suppose acts, for any state $|\varphi\rangle$, as

$$
\underset{U:|c|}{\substack{L \\ \varphi\rangle\rangle \\ \varphi \varphi\rangle}}
$$

Let $|\varphi\rangle$ and $|\phi\rangle$ two states that are linfrly independent. Then we should h eve $U|\varphi 0\rangle=|\varphi p\rangle$ and $\mathcal{L}\langle\phi\rangle=|\phi \phi\rangle$ by definition. Then the action of \mathcal{L} on $\langle\phi\rangle=\underset{\sim}{\frac{1}{\sqrt{2}}}(|\varphi\rangle+|\phi\rangle)$ yield

$$
U|\psi 0\rangle=\frac{1}{\sqrt{2}}\left(U\left\langle\langle 0\rangle+U\langle\langle 0\rangle)=\left(\frac{1}{2}(|\varphi\rangle)\right\rangle+(\mid \phi \phi)\right\rangle . \begin{array}{c}
U \\
U \\
1
\end{array}\right)-1
$$

If U were a cloning transformation. we myst alsophave
 a unitary cloning transformation.

Qubits

- Mathematically, quit is a vector in $|x\rangle=a|0\rangle+b|1\rangle=\binom{a}{b} \in$
\mathbb{C}^{2} with $|a|^{2}+|b|^{2}$ realized by physical quantum states such as the vertically and horizontally polarized photons, or spin $1 / 2$ in NMR system.
- Note that measurement will give $|0\rangle$ or $|1\rangle$ even a quit can assume infinitely many states. The probability for the measurement on $|x\rangle$ yielding $|0\rangle$ is $\langle x|(|0\rangle\langle 0|)|x\rangle=|a|^{2}$.
- Even if we can get the information $|a|$ and $|b|$ by measuring many identical $|x\rangle$ if it is available, we cannot get complete information of $|x\rangle\langle x|$.
- Using the measurable state $P_{1}=|0\rangle\langle 0|, P_{2}=|1\rangle\langle 1|$ to get information of $\langle\langle\mid P\rangle x\rangle,\left\langle x\left(P_{2} x\right\rangle\right.$, we have the "diagonal (nt res"
 of $\rho=|x\rangle\langle x|$, why h are $|d\rangle^{2}, \vec{l}, b^{2}$.

- In order to obtain con/plete information of $|x\rangle\langle x$ we may ap-
ply unitary y $U_{1}, \ldots \sigma_{r}$ and measure the diagonal $U_{j}|x\rangle\langle x| U_{j}^{\dagger}$ o

Bloch sphere and Bloch ball
Since two unit vectors $|x\rangle$ and state, it is convenient to use the rank one orthogonal projection $\rho=$ $|x\rangle\langle x|$, which will be called a pure state, to represent the state.

More generally, one may consider the mixed state $\rho \in M_{n}$ of th form

with probability vector $\left(p_{1}, \ldots, p_{r}\right)$ and pure states $\left|x_{1}\right\rangle\left\langle x_{1}\right|, \ldots,\left|x_{r}\right\rangle\left\langle x_{r}\right|$.
For quits, a mixed state has the form
with $|u|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}} \leq 1$.
Here

$$
\rho=\frac{1}{2}\left(I_{2}+u \cdot \sigma\right)=\frac{1}{2}\left(\sigma_{0}+u_{1} \sigma_{1}+u_{2} \sigma_{2}+u_{3} \sigma_{3}\right)
$$

- The eigenvalues of ρ are $\frac{1}{2}(1 \pm|u|)$.
- ρ is a pure state if and only
- In such a case, we may let

Multi-qubit systems and entangled states

Given n quits $\left|x_{1}\right\rangle, \ldots,\left|x_{n}\right\rangle$, we can consider the tensor product $\left|x_{1}\right\rangle \otimes \cdots \otimes\left|x_{n}\right\rangle \in \mathbb{C}^{N}$ with $N=2^{n}$. Most state vectors

$$
\sum_{i_{k}=0,1} a_{i_{1} \cdots i_{n}}\left|x_{i_{1}}\right\rangle \otimes \cdots \otimes\left|x_{i_{n}}\right\rangle \in \mathbb{C}^{N}
$$

are entangled state vectors, which are not of the tensor form.
Notation We often assume $\left|x_{j}\right\rangle \in\{|0\rangle,|1\rangle\}$, and regard

$$
|x\rangle=\left|x_{i_{1}} \cdots x_{i_{n}}\right\rangle=\left|q_{n-1} \cdots q_{0}\right\rangle
$$

$$
\left.\left|\delta_{n-1}\right\rangle \cdot-\theta \mid \sigma_{0}\right)
$$

as a binary number, and

$$
|\psi\rangle=\sum_{i_{k}=0,1} a_{i_{1} \cdots i_{n}}\left|x_{i_{1}} \cdots x_{i_{n}}\right\rangle .
$$

Example

$$
|x\rangle=\frac{1}{2} \sum_{, j \in\{0,1\}}\langle i j\rangle=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)=\frac{1}{2}+\frac{1}{2} \sum_{x=0}^{3}|x\rangle .
$$

