Bipartite and multipartite systems

A system may have two components described by two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 . Then the bipartite system is represented by $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$. A general state in \mathcal{H} has the form

$$|x\rangle = \sum_{i,j} c_{ij} |e_{1,i}\rangle \otimes |e_{2,j}\rangle$$
 with $\sum_{i,j} |c_{ij}|^2 = 1$

where $\{|e_{r,1}\rangle, |e_{r,2}\rangle, \dots\}$ is an orthonormal basis for \mathcal{H}_r with $r \in \{1, 2\}$.

Then $\{|e_{1,i}e_{2,j}\rangle : i = 1, 2, \dots, j = 1, 2, \dots\}$ is an orthonrmal basis for $\mathcal{H}_1 \otimes \mathcal{H}_2$.

Example For example, \mathbb{C}^2 has orthonormal basis $\{|0\rangle, |1\rangle\}$ with 10>+1,11> $|0\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}.$ Then $\mathbb{C}^2 \otimes \mathbb{C}^2$ has orthonormal basis (100) (01), (10), (11)} consisting of the 4 columns of the identity matrix I_4 . Similarly, $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ has orthonormal basis { $|000\rangle, \ldots, |111\rangle$ } $\langle u \rangle$ In general, if $U = [|u_1\rangle \cdots |u_m\rangle]$ such that the columns of U form (\heartsuit orthonormal basis for \mathbb{C}^m , and $V = [|u_1\rangle \cdots |u_m\rangle$ consisting of the columns of I_8 . an orthonormal basis for \mathbb{C}^m , and $V = [|v_1\rangle \cdots |v_n\rangle]$ such that the columns of V form an orthonormal basis for \mathbb{C}^n , then the columns of $U \otimes V = [\overline{u_1 v_1} \vee \cdots | u_m v_n)$ for an orthonormal basis for $\mathbb{G}^m \otimes \mathbb{R}^n$. M.h (6 . ~

Separable states, entangled states, Schmidt decomposition

A state of the form $|x\rangle = |x_1\rangle \otimes |x_2\rangle$ is a **separable state** or a **tensor product state**. Otherwise, it is an **entangled state**. **Example** Let $|x\rangle = c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle = \begin{pmatrix} c_{00} \\ c_{01} \\ c_{01} \\ c_{01} \\ c_{01} \\ c_{02} \\ c_{01} \\ c_{02} \\ c_{02} \\ c_{01} \\ c_{01} \\ c_{01} \\ c_{02} \\ c_{01} \\ c_{01} \\ c_{01} \\ c_{01} \\ c_{02} \\ c_{02} \\ c_{01} \\ c_{01} \\ c_{01} \\ c_{01} \\ c_{02} \\ c_{01} \\ c_{01$

4

(n)

Question How to detect that it is a tensor state

Answer Check whether the rows of the matrix $C = \begin{pmatrix} c_{00} & c_{00} \\ c_{10} & c_{11} \\ c_{10} & c_{11} \\ c_{11} & c_{11$

some unit vectors $|u\rangle = (a_1, a_2)^t$, $|v\rangle = (b_1, b_2)^t$. Then $|x\rangle = |u\rangle \otimes |v\rangle$. If not, $|x\rangle$ is entangled.

Remark Most states in $\mathcal{H}_1 \otimes \mathcal{H}_2$ are entangled states, which are most useful for quantum computing.

Theorem Suppose
$$\mathcal{H}_1, \mathcal{H}_2$$
 have finite dimensions, say, m and n .
Every state x_i in $\mathcal{H}_1 \otimes \mathcal{H}_2$ admits a Schmidt decomposition

$$\begin{array}{c} |x| = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle, \\ |x| = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle & \text{in a orthonormal set of } \mathcal{H}_2. \\ \text{Proof. Assume } \mathcal{H}_1 \text{ and } \mathcal{H}_2 \text{ orthonormal bases } \{|e_{1,1},\ldots,|e_{1,m}\rangle\} \\ \text{and } \{|e_{2,1},\ldots,|e_{2,m}\rangle\}. \\ \text{Every state has the form} \\ |x| = \sum_{j=1}^r (C_j |u_j\rangle \otimes |v_j\rangle & \text{with } |u\rangle = \sum_{j=1}^r d_j |e_{1,j}\rangle \text{ and } |v\rangle = \sum_{j=1}^r d_j^2 |e_{2,j}\rangle. \\ \text{If } C \text{ has rank one, then } C = |a| - a_m)^t (b_{1},\ldots,b_m) \text{ so that} \\ C = |u\rangle \otimes |v\rangle & \text{with } |u\rangle = \sum_{j=1}^r d_j |e_{1,j}\rangle \text{ and } |v\rangle = \sum_{j=1}^r d_j^2 |e_{2,j}\rangle. \\ \text{Because } ||x\rangle|| = 1, \text{ we may assume that } (a_{1},\ldots,a_m)^t \text{ and } (b_{1},\ldots,b_m)^t \text{ for } \mathcal{H}_1 \\ \text{are unit vectors and so are } |u\rangle, |v\rangle. \\ \text{In general, suppose } C = |c_{i,j}| \text{ has singular decomposition} \\ \sum_{j=1}^r s_j |d_{i,j}\rangle \langle |\beta|| = \sum_{j=1}^r s_j |c_{i,j}\rangle \\ \text{where } C_j = |\alpha_i\rangle \langle \beta_i| \text{ for } j = 1, \\ (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ and } \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ so that} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ and} \\ \hline (x) = \sum_{j=1}^r s_j |u_j\rangle \otimes |v_j\rangle \text{ and}$$

Example Suppose $|x\rangle = \sum_{i,j} c_{ij} |e_{1,i}e_{2,j}\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^3$ with

$$(c_{ij}) = UDV^t = d_1 |u_1\rangle \langle v_1 \rangle + d_2 |u_2\rangle \langle v_2|,$$

where

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}, \quad D = \frac{1}{5} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}, \quad V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & \sqrt{2} & 0 \end{pmatrix}$$

 $|v_2\rangle$,

Then

where

$$|u_1\rangle = (1,i)^t / \sqrt{2}, |u_2\rangle = (1,-i)^t / \sqrt{2},$$

 $|v_1\rangle = (1,1,0)^t / \sqrt{2}, |v_2\rangle = (0,0,1)^t.$

 $(|x\rangle$

Remark Extending the results to $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_k$ for $k \geq 3$ is an open problem.

No-cloning theorem

Theorem (Wootters and Zurek) An unknown quantum system can-K not be cloned by unitary transformations. V= N+N=Į *Proof.* Suppose there would exist a unitary transformation U that makes a clone of a quantum system. Namely, suppose tacts, for any state $|\varphi\rangle$, as 6 $U: [\omega 0 \rangle$ Let $|\varphi\rangle$ and $|\phi\rangle$ two states that are linearly independent. Then we should have $U|\varphi 0\rangle = |\varphi \varphi\rangle$ and $U|\phi 0\rangle = |\phi \phi\rangle$ by definition. Then the action of V on $|\phi\rangle =$ $|\varphi\rangle + \overline{|\phi\rangle}$ vields $U|\psi 0\rangle = \frac{1}{\sqrt{2}}(U|\varphi 0\rangle) +$ If U were a cloning transformation, we must also have (+) 6 $U|\psi 0
angle = |\psi \psi
angle$ = $\langle |\varphi \varphi \rangle + |\varphi \phi \rangle + |\phi \varphi \rangle$ $+ |\phi\phi\rangle$ which contradicts the previous result. Therefore, there does not exist a unitary cloning transformation. **Remark** There is proof using the fact that information cannot be D transmitted faster than light speed. See the supplementary note. 0 D

Qubits

I

in NMR system.

- Mathematically, qubit is a vector in $|x\rangle = a|0\rangle + b|1\rangle = {a \choose b} \in \mathbb{C}^2$ with $|a|^2 + |b|^2$ realized by physical quantum states such as the vertically and horizontally polarized photons, or spin 1/2
- Note that measurement will give $|0\rangle$ or $|1\rangle$ even a qubit can assume infinitely many states. The probability for the measurement on $|x\rangle$ yielding $|0\rangle$ is $\langle x|(|0\rangle\langle 0|)|x\rangle = |a|^2$.
- Even if we can get the information |a| and |b| by measuring many identical $|x\rangle$ if it is available, we cannot get complete information of $|x\rangle\langle x|$.
- Using the measurable states $P_1 = |0\rangle\langle 0|, P_2 = |1\rangle\langle 1|$ to get information of $\langle x|P_1x\rangle$, $\langle x|P_2x\rangle$, we have the "diagonal entries" of $\rho = |x\rangle\langle x|$, which are $|a|^2$, $|b|^2$.

• In order to obtain complete information of $|x\rangle\langle x|$, we may apply unitary U_1, \ldots, U_r and measure the diagonal $|U_j|x\rangle\langle x|U_j^{\dagger}$ to access information of the off-diagonal entries. Such study is known as **state tomography** problem.

One may consider qutrits in \mathbb{C}^3 and qudits in \mathbb{C}^3

 $| \times \rangle \gtrsim \varrho^{10}$

С 5

Bloch sphere and Bloch ball

Since two unit vectors $|x\rangle$ and $e^{it}|x\rangle$ represent the same quantum state, it is convenient to use the rank one orthogonal projection $\rho = |x\rangle\langle x|$, which will be called a pure state, to represent the state.

More generally, one may consider the mixed state $\rho \in M_n$ of the γ

_= 0/1×)<

|X|

c

form

$$\sum_{j=1}^{r} p_{\tau} \|x_j\rangle \langle x_j \|$$

with probability vector (p_1, \ldots, p_r) and pure states $|x_1\rangle\langle x_1|, \ldots, |x_r\rangle\langle x_r|$.

For qubits, a mixed state has the form

$$\rho = \frac{1}{2}(I_2 + u \cdot \sigma) = \frac{1}{2}(\sigma_0 + u_1\sigma_1 + u_2\sigma_2 + u_3\sigma_3)$$

 $u = (u_1, u_2, u_3) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta).$

 $= \frac{1}{2} \sum_{i=1}^{n} \propto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

with $|u| = \sqrt{u_1^2 + u_2^2 + u_3^2} \le 1$.

Here $(\sigma_1, \sigma_2, \sigma_3) = (\sigma_x, \sigma_y, \sigma_z)$ are the Pauli matrices"

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \sigma_x$$

- The eigenvalues of ρ are $\frac{1}{2}(1 \pm |u|)$
- ρ is a pure state if and only if |u|
- In such a case, we may let

Multi-qubit systems and entangled states

Given *n* qubits $|x_1\rangle, \ldots, |x_n\rangle$, we can consider the tensor product $|x_1\rangle \otimes \cdots \otimes |x_n\rangle \in \mathbb{C}^N$ with $N = 2^n$. Most state vectors

$$\sum_{i_k=0,1} a_{i_1\cdots i_n} |x_{i_1}\rangle \otimes \cdots \otimes |x_{i_n}\rangle \in \mathbb{C}^N$$

are entangled state vectors, which are not of the tensor form.

Notation We often assume $|x_j\rangle \in \{|0\rangle, |1\rangle\}$, and regard

$$|x\rangle = |x_{i_1} \cdots x_{i_n}\rangle = |q_{n-1} \cdots q_0\rangle$$

as a binary number, and

$$|\psi\rangle = \sum_{i_k=0,1} a_{i_1\cdots i_n} |x_{i_1}\cdots x_{i_n}\rangle.$$
Example
$$|x\rangle = \frac{1}{2} \int_{j \in \{0,1\}} |ij\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) = \frac{1}{2} \sum_{x=0}^{3} |x\rangle.$$

$$\int_{a} = 5 \text{ b}$$

| Fr-1>'- - . 6/2.)

