
Some important entangled states

Example The Bell states

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩), |Φ−⟩ = 1√

2
(|00⟩ − |11⟩),

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩), |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩)

are entangled states and form an orthonormal basis for the two qubit

systems.

Example In the 3 qubit system, we have that GHZ state and W

state:

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) and |W ⟩ 1√

3
(|100⟩+ |010⟩+ |001⟩).
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Example One can do measurement of the first qubit for a state

vector in a n qubit system. For instance,

|x⟩ = a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩, |a|2 + |b|2 + |c|2 + |d|2 = 1.

We measure the first qubit with respect to the basis {|0⟩, |1⟩}. Set

|x⟩ = |0⟩(a|0⟩+ b|1⟩) + |1⟩(c|0⟩+ d|1⟩)

= u|0⟩((a/u)|0⟩+ (b/u)|1⟩) + v|1⟩((c/v)|0⟩+ (d/v)|1⟩),

where u =
√
|a|2 + |b|2 and v =

√
|c|2 + |d|2. We can measure the

first qubit, say, by setting A = (|0⟩⟨0| − |1⟩⟨1|)⊗ I2 so that

M0 = |0⟩⟨0| ⊗ I2, M1 = |1⟩⟨1| ⊗ I2.

Applying M0 and M1, we obtain 0 with probability ⟨x|M0|x⟩ = u2

and 1 with probability v2; the state |x⟩ collapses to

|0⟩ ⊗ ((a/u)|0⟩+ (b/u)|1⟩) and |1⟩ ⊗ ((c/v)|0⟩+ (d/v)|1⟩), r

espectively, upon measurement.
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Einstein-Podolsky-Rosen (EPR) Phenomenon

� Consider the EPR state

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩).

Alice gets the first particle and Bob gets the second one.

� When Alice measures, Bob’s particle will change instantaneously

to |1⟩ or |0⟩ depending on the measured outcome of Alice being

|0⟩ or |1⟩.

� For example, set up the apparatus for the observable

A = |0⟩⟨0| ⊗ I2 − |1⟩⟨1| ⊗ I2.

� If Alice sees the reading 1, then Bob’s qubit is to |1⟩; if Alice
sees the reading −1, then Bob’s qubit is |0⟩.

� Alice cannot control her measurement and hence the reading

of Bob! So, it does not violate the special theory of relativity.

(It is impossible that information travels faster than light!)

� However, they can measure their individual states around the

same time, and decide to make a move according to |01⟩ or |10⟩
occur.

� Bell proposed an experiment which confirmed that there cannot

be a hidden rule governing the measurement of the entangled

pair.
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0.1 Bell inequality

About 30 years after the EPR paper was published, an experiment

test was proposed to check whether the measurement of entangled

pairs follow a certain predetermined rule imposed by Nature, or the

postulate of quantum mechanics.

Here is the proposed experiments. Suppose Charlie prepares an

entangled pair of qubits (photons or particles) and sends the first one

to Alice and the second one to Bob. Alice will apply one of her two

measurement schemes, say, Q and R, each will produce a measured

value in {1,−1}. Bob will also apply one of his two measurement

schemes, say, S and T , each will produce a measured value in {1,−1}.
Let us consider

QS +RS +RT −QT = (Q+R)S + (R−Q)T.

Because R,Q ∈ {1,−1}, it follows that either (Q + R)S = 0 or

(R−Q)T = 0. As a result, QS +RS +RT −QT ∈ {2,−2}.
Suppose there is a hidden rule governing the measurement out-

comes, and p(q, r, s, t) is the probability that, before the measure-

ments are performed, the system is in the state (Q,R, S, T ) = (q, r, s, t).

Then the expectation value E(QS + RS + RT − QT ) = E(QS) +

E(RS) + E(RT )− E(QT ) satisfies

|E(QS +RS +RT −QT )| =
∑

(q,r,s,t)

p(q, r, s, t)|qs+ rs+ rt− qt|

≤
∑

(q,r,s,t)

p(q, r, s, t) · 2 = 2.

So, we get the Bell inequality

|E(QS) + E(RS) + E(RT )− E(QT )| ≤ 2. (0.1)

Suppose Charlie prepares an entangled state

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩)

and gives Alice the first qubit, and Bob the second one. Alice uses

the measurement operators Q = σz and R = σx, and Bob uses the

measurement operators S = −1√
2
(σz+σx) and T = 1√

2
(σz−σx). Then

E(QS) = ⟨Ψ−|Q⊗S|Ψ−⟩ = 1√
2
, E(RS) = ⟨Ψ−|R⊗S|Ψ−⟩ = 1√

2
,

E(RT ) = ⟨Ψ−|R⊗T |Ψ−⟩ = 1√
2
, E(QT ) = ⟨Ψ−|Q⊗T |Ψ−⟩ = −1√

2
,
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and hence

E(QS +RS +RT −QT ) = 4/
√
2 = 2

√
2. (0.2)

This equality clearly violates the Bell inequality.

To determine whether (0.1) or (0.2) is valid, Alice and Bob can es-

timate E(QS) by performing measurements on many copies of |Ψ−⟩,
and record their results. After the experiments, they can multiply

their measurements when they used the measurement schemes Q and

S, respectively. Similarly, they can estimate E(RS), E(RT ), E(QT ),

so as to obtain an estimate of E(QS +RS +RT −QT ).

Experimental results showed strong support to (0.2). Hence, the

EPR proposal that there is a hidden rule governing the measurement

results of entangled pair was ruled out.
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Measurements

For each outcome m, construct a measurement operator Mm so

that the probability of obtaining outcome m in the state |x⟩ is com-

puted by

p(m) = ⟨x|M †
mMm|x⟩

and the state immediately after the measurement is

|m⟩ = Mm|x⟩√
p(m)

.

Example Let M = {M0,M1} with M0 = |0⟩⟨0| and M1 = |1⟩⟨1|.
Then for |x⟩ = a|0⟩+ b|1⟩ with a ̸= 0, p(0) = |a|2, M0|x⟩ = a|0⟩/|a|,
which is the same as the vector state |0⟩.

� In general, suppose an observable M is given with measure-

ment operatorsMm. Then setting Pi =M †
iMi, we require that∑

m Pm = In.

� If there are many copy of a state |x⟩, then the expected value

of M is

E(M) = ⟨M⟩ =
∑
m

mp(m) =
∑
m

m⟨x|Pm|x⟩ = ⟨x|M |x⟩.

Here M can be identified with
∑

mmPm.

� The standard derivation is

∆(M) =
√
⟨(M − ⟨M⟩)2 =

√
⟨M2⟩ − ⟨M⟩2.

� The variance (square of standard deviation) is

⟨(M − ⟨M⟩)2⟩ = ⟨x|M2|x⟩ − ⟨x|M |x⟩2.
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Another proof of no-cloning theorem

The no-cloning theorem may be proved by using the special the-

ory of relativity, which assumes no information can propagate faster

than the speed of light.

Suppose Alice and Bob share a Bell state

|Ψ−⟩ = 1√
2
(|0⟩|1⟩ − |1⟩|0⟩) = 1√

2
(|+ ⟩| − ⟩ − | − ⟩|+ ⟩).

where | ± ⟩ = 1√
2
(|0⟩ ± |1⟩). Readers are encouraged to verify the

second equality. Alice keeps the first qubit while Bob keeps the

second. If Alice wants to send Bob a bit “0”, she measures her

qubit in {|0⟩, |1⟩} basis while if she wants to send “1”, she employs

{| + ⟩, | − ⟩} basis for her measurement. Bob always measures his

qubit in {|0⟩, |1⟩} basis.

After Alice’s measurment and before Bob’s measurment, Bob’s

qubit is |0⟩ or |1⟩ if Alice sent “0” while it is | + ⟩ or | − ⟩ if Alice

sent “1”.

Suppose Bob is able to clone his qubit. He makes many copies

of his qubit and measures them in {|0⟩, |1⟩} basis. If Alice sent “0”,

Bob will obtain 0, 0, 0, . . . or 1, 1, 1, . . . while if she sent “1”, Bob

will obtain approximately 50% of 0’s and 50% of 1’s. Suppose Bob

received |±⟩ and madeN clones, then the probability of obtaining the

same outcome is 1/2N−1, which is negligible if N is sufficiently large.

Note that Bob obtains the bit Alice wanted to send immediately

after Alice’s measurement assuming it does not take long to clone

his qubit. This could happen even if Alice and Bob are separated

many light years apart, thus in contradiction with the special theory

of relativity. □
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Mixed States and Density Matrices

� A system is in a mixed state if there is a (classical) probability

pi that the system is in state |xi⟩ for i = 1, . . . , N .

� If there is only one possible state, i.e., p1 = 1, then the system

is in pure state.

� The expectation value (mean) of the measurement of the sys-

tem corresponding to the observable described by the Hermi-

tian matrix A is

⟨A⟩ =
N∑
j=1

pj⟨xj |A|xj⟩ = tr (Aρ),

where

ρ =

N∑
j=1

pj |xj⟩⟨xj |

is a density operator (matrix).

Example 1
2(|e1⟩⟨e1|+ |e2⟩⟨e2|) = 1

2I2 is a maximally mixed state.

It is the mixed state of 1
2(|e1⟩⟨e1|+ |e2⟩⟨e2|) with

|e1⟩ = (cos θ, sin θ)t and |e2⟩ = (sin θ,− cos θ)t, θ ∈ [0, 2π).
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