Mixed States and Density Matrices

- A system is in a mixed state if there is a (classical) probability p_{i} that the system is in state $\left|x_{i}\right\rangle$ for $i=1, \ldots, N$.
- If there is only one possible state, i.e., $p_{1}=1$, then the system is in pure state.
- The expectation value (mean) of the measurement of the system corresponding to the observable described by the Hermitan matrix A is
where

$$
\langle A\rangle=\sum_{j=1}^{N} p_{j}\left\langle x_{j}\right| A\left|x_{j}\right\rangle=\operatorname{tr}(A \rho)
$$

is a density operator (matrix).

Example $\frac{1}{2}\left(\left|e_{1}\right\rangle\left\langle e_{1}\right|+\left|e_{2}\right\rangle\left\langle e_{2}\right|\right)=\frac{1}{2} I_{2}$ is a maximally mixed state.
It is the mixed state of $\frac{1}{2}\left(\left|e_{1}\right\rangle\left\langle e_{1}\right|+\left|e_{2}\right\rangle\left\langle e_{2}\right|\right)$ with

Definition A (Hermitian) matrix $A \in M_{n}$ is positive semidefinite if

$$
\left.\int x|A| x\right\rangle \geq 0 \text { for all }|x\rangle \in \mathbb{C}^{n} .
$$

Proposition Let $A \in M_{n}$.
(a) The matrix $A \in M_{n}$ is positive semidefinite if and only if it has nonnegative eigenvalues.
(b) The matrix A is a density matrix if and only if it is positive semi-d finite with trace 1.

Proof. (a) Aet $A=A$ has a negative eigenvalues
with unit eigenector $|\lambda\rangle \mid$ then $\langle\lambda| A|\lambda\rangle=\lambda<0$.
If A has nonnegative eigenvalues, then for any $|x\rangle \in \mathbb{C}^{n}$ we can let $|y\rangle=U^{\dagger}|x\rangle$ so that $\langle x| A|x\rangle=\langle y| D|y\rangle=\sum_{j=1}^{n} \lambda_{j} \mid y_{\mid}^{2} \geq 0$.
(b) If $A=\sum_{j=1}^{\prime} p_{p_{r}\left(v_{j}\right\rangle\left\langle v_{j}\right) \text { is a density matrix, then }}^{\langle x| A|x\rangle=\sum_{j=1} p_{r}\left|\left\langle x \mid v_{j}\right\rangle\right|^{2} \geq 0,}$

and $\operatorname{tr}(A)=\sum_{j=}^{r} p_{j} \operatorname{tr},\langle \rangle\left\langle\gamma_{j}\right|=\sum_{j=1}^{r} p_{j}=1$.
If A is positive semidefinite with trace 1 , then

$$
A=\sum_{j=1}^{n} \lambda_{j}\left|\lambda_{j}\right\rangle\left\langle\lambda_{j}\right| \text { with } \sum_{j=1}^{n} \lambda_{j}=1
$$

Theorem A state $\rho \in D_{n}$ is pure if and only if any one of following condition holds.
Then $\rho^{2}=(|\psi\rangle\langle\psi|)(|\psi\rangle\langle\psi|)=|\psi\rangle\langle\psi|=\rho$.
Thus, the condition (a) holds.
If (a) holds, then $\operatorname{tr} \rho^{2}=\operatorname{tr} \rho=1$. Thus, the confition (b) holds.
If (b) holds, and $\rho=\sum_{j=1}^{n} \lambda_{j}\left|\lambda_{j}\right\rangle\left\langle\lambda_{j}\right|$,
where $\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0$ and $\sum_{j=1}^{n} \lambda_{j}=1$.
Then $\rho^{2}=\sum_{j=1}^{n} \lambda_{j}^{2}\left|\lambda_{j}\right\rangle\left\langle\lambda_{j}\right|$ has eigenvalues $\lambda_{1}^{2}, \ldots, \lambda_{n}^{2}$.
So, if $\operatorname{tr} \rho^{2}=1=\operatorname{tr} \rho$, then

$$
0=\sum_{j=1}^{n}\left(\lambda_{j}-\lambda_{j}^{2}\right)=\sum_{j=1}^{n} \lambda_{j}\left(1-\lambda_{j}\right)
$$

so that all the nonnegative numbers $\lambda_{j}\left(1-\lambda_{j}\right)$ is zero.
Thus, $\lambda_{j} \in\{0,1\}$. Since $\sum_{j=1}^{n} \lambda_{j}=1$, we see that
$\lambda_{1}=1$ and $\lambda_{j}=0$ for $j>1$.
Thus, $\rho=\left|\lambda_{1}\right\rangle\left\langle\lambda_{1}\right|$ is a pure state.

Definition 2.1 Suppose $\mathcal{H}=\mathcal{H} \otimes \mathcal{H}_{27}$ A state ρ is uncorrelated
if $\rho=\rho_{1} \otimes \rho_{2} ;$ is separate if it is a convex combination of

Otherwise, it is inseparable (or entangled).
Remark Every $A \in \mathcal{H}$ is a linear combination of product states with linear coefficient summing up to 1 . But some of the coefficients may be negative.

Reason Suppose the basis $\mathcal{B}_{1} \subseteq M_{n}$ contains the pure states:

$$
\left.\left|e_{1, j}\right\rangle\left\langle e_{1, j}\right|, 1 \leq j \leq m\right\}, \quad 1 \leq j \leq m,
$$

and $\{|x\rangle\langle x|$ with

$$
\left.\left.|x\rangle=\frac{1}{\sqrt{2}}\left(\left|e_{1, j}+\right| e_{1, k}\right)\right\rangle, \frac{1}{\sqrt{2}}\left(\left|e_{1, j}+i\right| e_{1, k}\right)\right\rangle, \quad 1 \leq j<k \leq m
$$

Then \mathcal{B}_{1} is a basis for M_{m}. Similarly, there is a basis for M_{n} consitting of pure states. As a result, $\left.\mathcal{B}=\left\{\rho_{1} \otimes \rho_{2}: \rho_{j} \in \mathcal{B}_{j}, j=1,2\right\}\right\}$ is a basis for $M_{m} \otimes M_{n}=M_{m n}$.

Remarks

The set of tensor states and separable states are small.
Separable states are closely related to product states.
Inseparable states are the resource for quantum computing.
Proposition Let $\rho \in D_{m n}$.

(a) Suppose ρ has rank one. Then ρ is separable if only only if $\rho=\rho_{1} \otimes \rho_{2}$ for rank one matrices $\alpha,-D_{m}, \rho_{2} \neq D_{n}$.
(b) If $\rho \in D_{m n}$ is separable, then ρ is a convex combination of quantum states of the form $\rho_{1} \in D_{m}, \rho_{2} \in D_{n}$, where ρ_{1}, ρ_{2} are pure states.

Partial transpose - a tool to determine inseparable sates The partial transpose with respect to \mathcal{H}_{2} is defined by

$$
\rho=\left(\rho_{1} \otimes \rho_{2}\right)
$$

Define the negativity of $\rho \in \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ by
$N(\rho)=\left(\sum_{j=2}^{\mid \lambda_{i}\left(\rho^{p t}\right)}-1\right)-(2) \geq 0,>0$
Then $\rho^{p t}$ has nonnegative eigenvalues if and only $N(\rho)=0$.
Theqpenh

Example Let

Theorem Let $\rho \in M_{m} \otimes M_{n}$. Then ρ is inseparable if and only if there is an entanglement witness F such that tr $(F p)>0 \operatorname{tr}\left(F\left(\sigma_{1} \otimes \sigma_{2}\right)\right)$ for all $\sigma_{1} \in D_{m}, \sigma_{2} \in D_{n}$.
It should be remarked that finding an entanglement witness of an inseparable state or showing the nonexistence could be a challenging problem.

Partial traces and Purification

Partial trace
Let $C=A \otimes B=\left(A_{i j} B\right) \in M_{m} \otimes A$.
(1) One can take the partial trace of the first system to get the matrix B in the second system by simplumming the diagonal blocks of C resulting in $A_{11} B+\cdots+A_{m m} B=(\operatorname{tr} A) B=B$.
(2) One can take the partial trace of the second system to get the matrix A in the first system by simply taking the trace of all the blocks of C resulting in $\left(A_{i j} \operatorname{tr}(B)\right)=\left(A_{i j}\right)=A$.

For a general state $\rho=\left(T_{r s}\right)_{1 \leq r, s \leq m}$ with $T_{r s} \in M_{n}$ for all r, s, the first partial trace and second partial traces are

$$
A_{1}=\operatorname{tr}_{2} A=\sum_{k=1}^{n}\left(I_{m} \otimes\left\langle e_{2, k}\right|\right) A\left(I_{m} \otimes\left|e_{2, k}\right\rangle\right),
$$

where m, n are the dimension of \mathcal{H}_{1} and \mathcal{H}_{2}.
In matrix form, if $\rho=\left(P_{i j}\right) \in M_{m}\left(M_{n}\right)$, then $\operatorname{tr}_{2}(\rho)=\left(\operatorname{tr} P_{i j}\right) \in$ M_{n}. One can define $\operatorname{tr}_{1}\left(\rho_{i j}\right)=\rho_{11}+\cdots+\rho_{m m}$, which corresponds to

$$
A_{2}=\operatorname{tr}_{1} A=\sum_{k=1}^{m}\left(\left\langle e_{1, k}\right| \otimes I_{n}\right) A\left(\left|e_{1, k}\right\rangle \otimes I_{n}\right) .
$$

