
Partial traces and Purification

Partial trace

Let C = A⊗B = (AijB) ∈Mm ⊗Mn.

(1) One can take the partial trace of the first system to get the

matrix B in the second system by simply summing the diagonal

blocks of C resulting in A11B + · · ·+AmmB = (trA)B = B.

(2) One can take the partial trace of the second system to get the

matrix A in the first system by simply taking the trace of all

the blocks of C resulting in (Aijtr (B)) = (Aij) = A.

For a general state ρ = (Trs)1≤r,s≤m with Trs ∈ Mn for all r, s, the

first partial trace and second partial traces are

tr 1(ρ) = T11 + · · ·+ Tmm ∈Mn and tr 2(ρ) = (trTij) ∈Mm.

Let A ∈ H1 ⊗H2. The partial trace of A over H2 is an operator

acting on H1 defined by

A1 = tr 2A =
n∑

k=1

(Im ⊗ ⟨e2,k|)A(Im ⊗ |e2,k⟩),

where m,n are the dimension of H1 and H2.

In matrix form, if ρ = (Pij) ∈Mm(Mn), then tr 2(ρ) = (trPij) ∈
Mn. One can define tr 1(ρij) = ρ11 + · · · + ρmm, which corresponds

to

A2 = tr 1A =
m∑
k=1

(⟨e1,k| ⊗ In)A(|e1,k⟩ ⊗ In).
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Purification

Theorem Let ρ1 =
∑r

j=1 pj |xj⟩⟨xj |. If |ψ⟩ =
∑r

j=1

√
p
j
|xj⟩ ⊗ |yj⟩,

for an orthonromal set {|y1⟩, . . . , |yr⟩} ⊆ Cr, then

tr 2(|ψ⟩⟨ψ|) = ρ1.

Example Let ρ = 1
4

(
2 1
1 2

)
= 3

4 |x1⟩⟨x1|+
1
4 |x2⟩⟨x2| with

|x1⟩ = (1, 1)t/
√
2, |x2⟩ = (1,−1)t/

√
2.

Let {|y1⟩, |y2⟩} = {|e1⟩, |e2⟩}.

Then |ψ⟩ = 1
2
√
2


√
3
0√
3
0

+ 1
2
√
2


0
1
0
−1

 and

|ψ⟩⟨ψ| = 1
8


3

√
3 3 −

√
3√

3 1
√
3 −1

3
√
3 3 −

√
3

−
√
3 −1 −

√
3 1

.
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Quantum operations on an open system

Quantum operations on a closed system with quantum state ρ

has the form

ρ 7→ UρU †,

for some unitary U .

A quantum system ρ always interact with other quantum systems

(from the environment or by the introduction of an auxiliary system

for quantum computing).

We assume that σ is the quantum state for the environment or aux-

iliary system,

and the initial state of the open system is σ ⊗ ρ.

Then a general quantum operation will be obtained by taking a suit-

able partial trace of U(σ ⊗ ρ)U †.
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Theorem For every quantum operation on an open system Φ :

Mn → Mm there exist r ∈ N and F1, . . . , Fr ∈ Mm,n such that∑r
j=1 F

†
j Fj = In and

Φ(A) =
r∑

j=1

FjAF
†
j for all A ∈Mn.

This is called the operator sum representation of the quantum oper-

ation. The matrices F1, . . . , Fr are called the Kraus operators of the

operations.

Proof. Suppose Φ :Mn →Mm is an quantum operation.

We may assume that Φ(ρ) is the partial trace of

U(σ ⊗ ρ)U † ∈Mnk with nk = mr.

Here U may depends on t. By purification, we may assume that

σ = E11 so that

U(σ ⊗ ρ)U † = U

(
ρ 0
0 0

)
U † =

F1
...
Fr

 ρ(F ∗
1 | · · · |F ∗

r )

with diagonal blocks F1ρF
†
1 , . . . , FrρF

†
r so that

tr 1(U(σ ⊗ ρ)U † =

r∑
j=1

FjρF
†
j .

Here (F †
1 , . . . , F

†
r ) are the first n rows of U †.

Thus,
∑r

j=1 U
†
jUj = In.
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Example Let U1, . . . , Ur ∈ U(n) and p1, . . . , pr be positive numbers

summing up to 1. Then Φ :Mn →Mn defined by

Φ(A) =
r∑

j=1

pjUjAU
†
j for all A ∈Mn

is a quantum channel known as the random unitary channel or

mixed unitary channel.
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Quantum channels and Measurements

When a quantum state ρ is transmitted through a quantum chan-

nel, it will interact with the external environment. So, we may re-

gard the transmission as a process of letting the quantum state going

through a quantum operation of an open system, and assume the re-

ceived state has the form

ρ̂ =

r∑
j=1

FjρF
†
j .

Here F1, . . . , Fr are the Kraus operators caused by the influence of

the environment on ρ. In this context, F1, . . . , Fr are known a the

error operators.

Positive Operator-Valued Measure (POVM)

� Eigenprojections of A.

Quantum measurements can be viewed as quantum operations

on open systems. As mentioned before a Hermitian matrix

A =
∑n

j=1 λj |λj⟩⟨λj | is associated with an observable. If a state

ρ ∈ Dn goes through the measurement process corresponding

to A, the state ρ will “collapse” to one of the pure states |λj⟩⟨λj |
with a probability tr (Aρ).

� Projective measurement.

In general, if A =
∑s

j=1 λjPj , where Pj is the projection oper-

ator corresponding to the eigenvalue λj for the distinct eigen-

values λ1, . . . , λs of A. In such a case, the projective mea-

surement of ρ under the measurement associated with A is

the quantum operation

ρ 7→
∑
j

PjρPj ,

where pj = tr (PjρPj) = tr (ρPj) and the set {P1, . . . , Pr} sat-

isfies the completeness relation
∑

j PjP
†
j =

∑
j Pj = I.
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� POVM. for any positive semidefinite matrices Q1, . . . , Qr ∈Mn

such that Q1 + · · · + Qr = In, there are M1, . . . ,Mr ∈ Mn

such that M †
jMj = Qj . The measurement operators are then

associated with the quantum operation

ρ 7→
r∑

j=1

MjρM
†
j

so that ρ will change to the quantum state 1
pj
MjρM

†
j with a

probability pj = tr (MjρM
†
j ) = tr (ρQj). The set {Q1, . . . , Qr} =

{M †
1M1, . . . ,M

†
rMr} is known as the positive operator-valued

measure (POVM).

Example Suppose Bob will be given a quantum state chosen from

the linearly independent set of unit vectors {|ψ1⟩, . . . , |ψm⟩}, which
may not be orthonormal. He can construct the following POVM

{Q1, . . . , Qm+1} such that he will know for sure that |ψj is sent to him

if the measurement of the received state yields Qj if Qj = |ϕj⟩⟨ϕj |/m,

where ⟨ϕj |ϕj⟩ = 1 and ⟨ϕj |ψi⟩ = 0 for all i ̸= j for j = 1, . . . ,m and

Qm+1 = I −
∑m

j=1Qj . Evidently, a measurement of |ψj⟩⟨ψj | will
yield Qj or Qm+1.
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Fidelity

Definition 2.2 The fidelity of two density matrices ρ1 and ρ2 is

defined as

F (ρ1, ρ2) = tr
√√

ρ1ρ2
√
ρ1.

Note that
√
ρ1ρ2

√
ρ1 is positive semidefinite so that

√√
ρ1ρ2

√
ρ1 is

well defined and F (ρ1, ρ2) = tr
√√

ρ1ρ2
√
ρ1 ≥ 0.

Example ρ1 = diag (1/3, 2/3), ρ2 =
1
2

(
1 1
1 1

)
. Then

Remarks

1. If A =
∑

j λjPj with λj ≥ 0, then A1/2 =
∑

j

√
λjPj .

2. Let R =
√
ρ1
√
ρ2 with singular values r1, . . . , rn. Then RR

† =
√
ρ1ρ2

√
ρ1 has eigenvalues r21, . . . , r

2
n and

F (ρ1, ρ2) = tr (
√
RR∗) = r1 + · · ·+ rn.

3. Note also that R†R also has the same eigenvalues r21 ≥ · · · ≥ r2n.

So,

F (ρ2, ρ1) = tr (R∗R) = tr
√√

ρ2ρ1
√
ρ2 = r1+· · ·+rn = F (ρ1, ρ2).

4. For any unitary U , F (Uρ1U
†, Uρ2U

†) = F (ρ1, ρ2). (Exercise

2.10).

5. Suppose ρ1, ρ2 have eigenvalues a1 ≥ · · · ≥ an and b1 ≥ · · · ≥
bn. Then

F (ρ1, ρ2) = max{|tr (ρ1/21 ρ
1/2
2 U)| : U unitary} ≤

n∑
j=1

√
ajbj ≤ 1.

6. For any two density matrices ρ1 and ρ2, we have

0 ≤ F (ρ1, ρ2) ≤ 1.

The first equality holds if and only if ρ1ρ2 = 0; the second

equality holds if and only if ρ1 = ρ2.

Open problems

1. Let A ∈ Dm, B ∈ Dn. Determine S(A,B) = {C ∈ Dmn :

tr 1(C) = B, tr 2(C) = A}.
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2. Determine C ∈ S(A,B) with maximum rank and minimum

rank.

3. Determine C ∈ S(A,B) with maximum S(C) = tr (−C lnC),

von Neumann entropy.

4. More generally, one may consider tripartite system with states

inDn1n2n3 and determine S(T1, T2) = {C ∈ Dn1n2n3 : tr 1(C) =

T1, tr 2(C) = T2}, where T1 ∈ Dn2n3 and T2 ∈ Dn1n3 are two

given states.
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