‘r.‘ "F =

2 '@5 take the partial trace of the Second system to %pt t eg
mafrix A in the first system by snnply takin,

the blocks of C Ryh'rr@ in (A;;tr (B — __
For a general stat\3 p = s s<m With Thg AN
first partial trace and secand partial traces are
T+ +Tm € M| and  tra(p) =
/
yd ~ 1

Let A € H1 ® Ho. The parttil trace of A over Hs is an operator

acting on H; defined by
A1 tI‘QA Z 62 k‘ ®‘62k>) \ T

where m,n are the dimension of H; and Hs. M _,——-—-’q'/'

In matrix form, if p = (P;;) € M, ( n), then tro(p) = (tr Py;) € U U-,_
M,,. One can define tr1(p;;) = p11 + - + Pmm, which corresponds f _’ § :E

to
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Purification

heorem Let p; =

My @ () = tbx t n ’
Example Let p = g!Z@ :@le )1l i

1) = 11/f\m2 (1,-1)"/v2.

&1(1’ o
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Quantum operations on an open system
Quantum operations on a closed system with quantum

has the form

/
for some unitary U. , (ﬁ
\)
A quantum system p always interact with other % LLupersie

/s
(from the environment or by the introduction of an auxiffary

for quantum computing). P
We assume that o is the quantum state for the enyiyonment o} byx-
iliary system,

and the initial state of the open system is fo o."ﬂ

Then a general quantum operation will be ghyained by taking a syit-
able partial trace of U(o @ p)UT.

T %, y (<87,
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Theo or every quantum operation on an open system P :
M, there exist r € N and;Fl,...,Fr a M, such that

ﬁ—v:‘/ o~

FjAFj for all A € M,,.

This is called the operator sum representation of the quantum oper-
ation. The matrices F1, ..., F, are called the Kraus operators of the
operations. .

Proof. Suppose ® : M,, — M,, is an quantum operation.

We may assume that ®(p) is the partial trace of

Ulo @ p)U' € My, with nk = mr.

Here U may depends on ¢. By purification, we may assume that

/

o = Fy1 so th —_

with diagonal blocks FlpFlT, . ,FrpFﬂL SO

— Y R
AT
Here@) are the first n royﬂ)L_UT_._, ./ \

L d
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Example Let Uy,...,U, € U(n) and p1,...,p, be positive numbers
summing up to 1. Then ¢ : M,, — M,, defined by

®(A) =Y pU;AUS  for all A € M,
j=1

is a quantum channel known as the random unitary channel or

mixed unitary channel.

21



Quantum channels and Measurements
When a quantum state p is transmitted through a quantum chan-
nel, it will interact with the external environment. So, we may re-

gard the transmission as a process of letting the quantum state going

\ymssume the re-

Here Fi,..., F, are the Kraus operators caused by the influence of

through a quantum operation of an open syste

ceived state has the form

the environment on p. In this context, Fi,..., F, are known a the

error operators.

Positive Operator-Valued Measure (POVM)

e Eigenprojections of A.

Quantum measurements can be viewed as quantum operations
on open systems. As mentioned before a Hermitian matrix
A=370_1 AjIAj)(Aj| is associated with an observable. If a state
p € D, goes through the measurement process corresponding
to A, the state p will “collapse” to one of the pure states |\;)(\;]
with a probability tr (Ap).

e Projective measurement.

In general, if A = ijl AjPj, where P; is the projection oper-
ator corresponding to the eigenvalue A; for the distinct eigen-
values A1,...,As of A. In such a case, the projective mea-
surement of p under the measurement associated with A is
the quantum operation

p— ZPijj,

;) and the set {P,..., P} sef-

on Y PPl =P =1
(ﬂ§

=

22
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e POVM. for any positive semidefinite matrices Q1,...,Q, € M,
such that Q1 4+ --- + @, = I, there are My,..., M, € M,
such that M ]T M; = Q;. The measurement operators are then

associated with the quantum operation

,
p > D MipM]
j=1

so that p will change to the quantum state piijpM]T with a

probability p; = tr (Mij;) =tr(pQ;). Theset {Q1,...,Qr} =
{MlJer, e MJMT} is known as the positive operator-valued
measure (POVM).

Example Suppose Bob will be given a quantum state chosen from
the linearly independent set of unit vectors {|i1),...,|tm)}, which
may not be orthonormal. He can construct the following POVM
{Q1,..., Qm41} such that he will know for sure that |¢; is sent to him
if the measurement of the received state yields Q; if Q; = [¢;)(®;|/m,
where (¢;]¢;) =1 and (¢;|¢;) =0 for all i # j for j =1,...,m and
Qm+1 = 1 =31, Qj. Evidently, a measurement of [¢;)(t;| will
yield @Q; or Qm41.
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Fidelity

Definition 2.2 The fidelity of two density matrices p; and ps is

defined as
F(p1, p2) = tr/v/p1p2/p1-

Note that /p1p2+/p1 is positive semidefinite so that |/\/p1p2+/p1 is
well defined and F'(p1, p2) = tr/+/p1p2/p1 > 0.

11

Example p; = diag (1/3,2/3), p2 = 3 <1 1>. Then

Remarks
1 If A=), A\jP; with A; > 0, then AY2 =3 V/A;P;.

2. Let R = \/p1+/p2 with singular values ry,...,7,. Then RR' =
\/Pip2+/p1 has eigenvalues rf,...,r2 and

F(p1,p2) = tr (VRR*) =11+ +1p.

3N

3. Note also that RT R also has the same eigenvalues 7“% > ... >0
So,

F(pa, p1) = tr (R*R) = tr\/\/p2p1v/p2 = r1+ - -+rn = F(p1, p2).

4. For any unitary U, F(Up1UT,UpoU"') = F(p1,p2). (Exercise
2.10).

5. Suppose p1, p2 have eigenvalues ay > --- > a, and by > -+ >
b,. Then

F(p1, p2) = max{|tr (p%ﬂp;/QU)\ : U unitary} < Z a;b; < 1.
j=1

6. For any two density matrices p; and p2, we have

0 < F(p1,p2) <1

The first equality holds if and only if p;po = 0; the second
equality holds if and only if p; = ps.

Open problems

1. Let A € D,,,,B € D,,. Determine S(A,B) = {C € Dy, :
tI‘l(C) :B,trg(C) :A}
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2. Determine C' € S(A, B) with maximum rank and minimum

rank.

3. Determine C' € S(A, B) with maximum S(C) = tr (—C'InC),

von Neumann entropy.

4. More generally, one may consider tripartite system with states
in Dy, nony and determine S(71,75) = {C € Dpyngns : tr1(C) =
Ty,tro(C) = Ta}, where T1 € Dy,pn, and 1o € Dy, p, are two
given states.
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