
Math 410 Quantum Computing C.K. Li Notes on Chapter 5

In this chapter, we introduce some simple algorithms. This demonstrate how one can use the

quantum properties to solve certain problems efficiently. It should be emphasized that formulating

the “right” questions to use quantum properties are important.

Simple quantum algorithms

5.1 Deutsch Algorithm

Let f : {0, 1} → {0, 1}.
Decide whether f(0) = f(1) or f(0) ̸= f(1)

using one Uf evaluation.

Step 1 |ψ0⟩ = (H ⊗H)|01⟩ = (1/2)(|00⟩ − |01⟩+ |10⟩ − |11⟩).

Stpe 2 Let Uf : |x, y⟩ 7→ |x, y ⊕ f(x)⟩. Then

|ψ1⟩ = Uf |ψ0⟩

= (1/2)(|0, f(0)⟩ − |0, 1⊕ f(0)⟩+ |1, f(1)⟩ − |1, 1⊕ f(1)⟩)

= (1/2)(|0, f(0)⟩ − |0,¬f(0)⟩+ |1, f(1)⟩ − |1,¬f(1)⟩).

Step 3 |ψ2⟩ = (H ⊗ I2)|ψ1⟩

= γ[(|0⟩+ |1⟩)(|f(0)⟩ − |¬f(0)⟩) + (|0⟩ − |1⟩)(|f(1)⟩ − |¬f(1)⟩)].

Step 4 Measure the first qubit of |ψ2⟩:

Case 1. If f(0) = f(1), then |ψ2⟩ = |0⟩(|f(0)⟩ − |¬f(0)⟩) and we get the measurement ....

Case 2. If f(0) ̸= f(1), then |ψ2⟩ = |1⟩(|f(0)⟩ − |¬f(0)⟩) and we get the measurement ....



5.2.1 Deutsch-Jozsa Algorithm

Let Sn = {0, 1, . . . , 2n − 1} and f : Sn → {0, 1}.
We want to decide whether f is constant or balanced.

Step 0 |ψ0⟩ = |0⟩⊗n|1⟩

Step 1 |ψ1⟩ =Wn+1|ψ0⟩ = γ(
∑

x |x⟩)(|0⟩ − |1⟩).

Step 2 Let Uf : |x⟩|c⟩ 7→ |x⟩|c⊕ f(x)⟩ and set

|ψ2⟩ = Uf |ψ1⟩

= γ
∑

x(|x⟩(|0⟩ − |1⟩)⊕ f(x)⟩)

= γ
∑

x |x⟩(−1)f(x)(|0⟩ − |1⟩)

(as |c⟩ = |0⟩ − |1⟩ changes to ±|c⟩ depending on f(x) = |0⟩ or 1⟩)

= γ
∑

x(−1)f(x)|x⟩(|0⟩ − |1⟩)



Step 3 |ψ3⟩ = (Wn ⊗ I2)|ψ2⟩ = γ
(∑

x,y(−1)f(x)(−1)x·y|y⟩
)
(|0⟩ − |1⟩).

Note that W1|0⟩ = 1√
2
(|0⟩+ |1⟩) and W1|1⟩ = 1√

2
(|0⟩ − |1⟩)

so that γW1(|0⟩+ |1⟩) =
∑

x,y∈{0,1}(−1)xy|y⟩. Then

W2(
∑

x1x2
|x1x2⟩)

= (
∑

x1,y1
(−1)x1y1 |y1⟩)(

∑
x2,y2

(−1)x2y2 |y2⟩)

=
∑

(x1,x2),(y1,y2)
(−1)(x1,x2)·(y1,y2)|y1y2⟩

=
∑

x,y(−1)x·y|y⟩.

Here we are summing up the entries in each row.



Step 4 Measure the first n qubits.

Case 1. If f is constant, then |ψ3⟩ = γ̃|0⟩⊗n(|0⟩ − |1⟩).

Case 2. If f is balanced, then the probability of the

measurement of the first n-qubits equal |y⟩ = |0 · · · 0⟩ is
proportional to

∑
x(−1)f(x)(−1)x·0 =

∑
x(−1)f(x) = 0

because half of the f(x) values are 0 and the rest are 1.



A closed look for a 2-qubit example

f(0, 0) = 0, f(0, 1) = 1, f(1, 0) = 1, f(1, 1) = 0.

Uf (W2|00⟩|1⟩) = γUf
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Applying H ⊗ H ⊗ I2 to the vector, we can only get |00⟩ when all (−1)f(x) are equal for all |x⟩.
Else, it has the form

∑
y cy|y⟩, where cy =

∑
x(−1)f(x)(−1)x·y.

Here note that:

W2(
∑

x1x2
|x1x2⟩) = (

∑
x1,y1

(−1)x1y1 |y1⟩)(
∑

x2,y2
(−1)x2y2 |y2⟩) =

∑
(x1,x2),(y1,y2)

(−1)(x1,x2)·(y1,y2)|y1y2⟩.

5.2.2 Bernstein-Vazirani algorithm

In the above example, f(x1, x2) = (1, 1) · (x1, x2).

Then the resulting measurement of the first two qubits of |ψ3⟩ yields |11⟩.

In general, let f(x) = c · x = (cn−1, . . . , c0) · (xn−1, . . . , x0). Apply the Deutsch-Jozsa algorithm

to get:

|ψ3⟩ = γ

(∑
x,y

(−1)c·x(−1)x·y|y⟩

)
(|0⟩ − |1⟩) = γ|c⟩(|0⟩ − |1⟩).

Measuring the first n-qubits will give c = (cn−1, . . . , c0).



5.3 Simon Algorithm

Let f : {0, 1}n → {0, 1}n. Determine

the nonzero p ∈ {0, 1}n if f(x⊕ p) = f(x).

1. Set |ψ0⟩ = |0⟩|0⟩ in CN ⊗CN with N = 2n.

Use the Walsh-Hadamard transformation Wn to get

|ψ1⟩ = (Wn ⊗ I)|ψ0⟩ = η
∑2n−1

x=0 |x⟩|0⟩,

where η = 1√
N

= 1√
2n
.

2. Use Uf and n controlled-NOT gates with control

qubits f1(x), . . . , fk(x) to get |ψ2⟩ = η
∑

x |x⟩|f(x)⟩.

3. Apply measurement f(x0) to the second state to get

|ψ3⟩ = 1√
2
(|x0⟩+ |x0 + p⟩)|f(x0)⟩.

4. Apply Wn ⊗ I again to get

|ψ4⟩ = η
∑

y(−1)x0·y[1 + (−1)p·y]|y⟩|f(x0)⟩

= η
√
2
∑

p·y=0(−1)x0·y|y⟩|f(x0)⟩.

5. Measure the first state to get |y⟩ such that p · y = 0.

The only states |y⟩ with positive probability

in the sum are those satisfying p · y = 0.

Thus, a measurement will always yield such a

vector y1 = (y11 · · · y1n).

Repeat this to get linearly independent

y1, . . . , yn−1 such that p · yj = 0

for all j, i.e., we have a linear system

(yij)(p0, . . . , pn−1)
t = (0, . . . , 0)t.

We need to do it in O(n) attempts with a good

probability. Then solve for p.


