§ 8.1 RSA

Designers: Ron Rivest, Adi Shamir, and Leonard Adleman, 1977.

Basic assumption. Factorization of N = pq for two prime numbers p and q are hard to do.

Public key crypto-system. Bob (the bank, VISA card co.) can announce a public key for customers (Alice) to encrypt their message and send it to Bob via a public channel, and Bob can easily decrypt the message.

Example Factor the following numbers into N = pq. 45878443254366745 7536576836238936804738907362515346578697687343 753657683628743673389368047389675407362518902115346578697687

Mathematical Background

- Euclidean Algorithm Let a, b be positive integer. There are unique pair of integers (q, r) such that b = aq + r.
- Fermet's Little Theorem If p is an odd prime, and $a \in \mathbb{Z}$ is not a multiple of p, then
- $(a^{i}-1)$ $a^{p-1} \equiv 1 \pmod{p}.$ • Use the notation $\mathbb{Z}_p = \{[0], \dots, [p-1]\}$. Then $[j]^p = [1]$ whenever $[j] \neq [0]$. See the nice proof in the textbook. • Let N = pq for two odd primes p, q. Then for every [e] in the set $\mathbb{Z}_{pq}^* = \{ [j] : j \text{ is not a multiple of } p \text{ or } q \},\$ there is a unique $[d] \in \mathbb{Z}_{pq}^*$ such that [e][d] = [1]. As a result, for any $m \in \{0, \ldots, N-1\}$, if m^e is given, then $[m]^{(ed)} = [m].$ M o, Bob can announce e in public. If Alice wants to send ^e. Bob can then recover m by computing sen *e* , V = [,]

RSA Scheme

Step 1 Bob: Let N = pq, and let e < N be relatively prime to (p-1)(q-1). Here *e* is known as the exponent, and release *N* and *e*. Then compute the modular inverse *d* of *e* and keeps *d* secret.

Step 2 Alice: To send Bob a message represented as a number m, encode the message m by m^e and send it through an open/public channel.

Step 3 Bob: Decode the message by applying $(m^e)^d = m \pmod{N}$.

Example 1. Let (p,q) = (61, 53) and N = 3233.

- 2. The groups of units has (p-1)(q-1) = 780 elements.
- 3. For instance e = 17 is a unit, and d = 413 satisfies $ed \equiv 1 \pmod{N}$.
- 4. Public key (N, e) = (3233, 17).
- 5. Alice sends a number (message) m as $c(m) = m^e \pmod{3233}$ with c(m) < 3233.
- 6. Bob decrypts c(m) as $m = c(m)^d \pmod{3233}$.

For instance if m = 65, then $c = 65^{17} = 2790 \pmod{3233}$.

Then Bob computes $2790^{413} = 65((\text{mod } 3233))$.

8 8.2 Factorization Algorithm
Step 1 Let N begiven. Eaks a random
$$m$$
 (N and
compute keyl (M,M) = gets the Euclidean Algorithm:
 $|T \neq 2$, I_1 for $4ac$ extremely leck! If not, go to Step 2.
Step 2 Octine $f_N : N \to N$ by $a = m^0 (mod N)$.
(That is, finding the order/period of m in $U_N^{(*)}$.
This is the quantum part!)
Step 3 If P is odd, it cannot be used. Go back tor Step 1.
Else, go to Step 4.
Step 4/If P is even, then
 $(m^{P/2} - 1)(m^{P/2} + 1) = m^P - 1 = 0 (mod N)$.
If $m^{P/2} + 1 \neq 0$ (mod N), then $ged(m^{P/2} - 1, N) = 1$;
go back to Step 1.
If $m^{P/2} + 1 \neq 0$ (mod N) as P is the order of m .
 $m^{P/2}$ to $(mod N)$, then $ged(m^{P/2} - 1, N) = 1$;
go back to Step 1.
If $m^{P/2} + 1 \neq 0$ (mod N) as P is the order of m .
 $m^{P/2}$ to $(mod N)$ as P is the order of m .
 $m^{P/2}$ to $(mod N)$ as P is the order of m .
 $protect try Step 5.$
Step 5 Compute $d - ged(m^{P/2} - 1, N)$ to get p or $m^{P/2} = 1$ (mod $M)$.
Step 3. Step 1. Choose $m = 7$.
Step 2. Then (by quantum computer or convestional computer) that $P \in 368$ if the smallest positive number such that $P^P - 1 = 1$ (mod 799).
Step 3. Step 7. Then $(T^{144} - 1)(T^{244} - 1) = 0 \pmod{799}$.
Step 4. Now, ged $P^{124} + 1, 799$) $= 17 + 1$.
So, we are governed trong namely, $799 - 17 - 47$.
 $[n fact, get(T^{144} - 1, 799) = 47.]$

§ 8.3 - 8.5 Shor's Algorithm

designed by Peter Shor (1994).

Complexity: The time taken is polynomial in $\log N$, which is the size of the input). Specifically it takes quantum gates of order $O((logN)^2(loglogN)(logloglogN))$ using fast multiplication.

This is almost exponentially faster than the most efficient known classical factoring algorithm, the general number field sieve:

 In 2001, Shor's algorithm was demonstrated by a group at IBM, who factored 15 into 3 × 5, using an NMR implementation of a quantum computer with 7 qubits.

5

- After IBM's implementation, two independent groups implemented Shor's algorithm using photonic qubits, emphasizing that multi-qubit entanglement was observed when running the Shor's algorithm circuits.
- In 2012, the factorization of 15 was performed with solid-state qubits. Also in 2012, the factorization of 21 was achieved, setting the record for the largest number factored with Shor's algorithm.
- In 2019 an attempt was made to factor the number 35 using Shor's algorithm on an IBM Q System One, but the algorithm failed due to cumulating errors.

- In April 2012, the factorization of $143(=11 \times 13)$ was achieved, although this used **adiabatic quantum computation** rather than Shor's algorithm.
- In November 2014, it was discovered that this 2012 adiabatic quantum computation had also factored larger numbers, the largest being $56153 = 233 \times 241$
- Using additional mathematical idea, Gröbner basis, researchers managed to factor $223357 = 401 \times 557$ in 2017
- In 2018, in the paper "Quantum Annealing for Prime Factorization", researchers showed how to factor 15, 143, 59989 = 239×251 , and $376289 = 571 \times 659$ using 4, 12, 59, and 94 logical qubits.

wane

<25 N r Remarks 1. If f is periodic, f(x) = f(x+P) we see that $|\Upsilon(y)|$ larger. 2. In general, if (w^{Py}) is near ± 1 , i.e., yPQ is close to an integer С. X 3. By the theory of of continued fractions of rational number, we the need to find d/s such that 5= $|d/s - y/Q| \le 1/(2Q),$ gcd(d, s) = 1, s < N.f not, try m^x to get other 4. So, if f(x) = f(x+s) then a fraction d'/s' to approximate y/Q. N 3-6~ 1

§8.4 Probability Distribution (Details)

Proposition 8.1 Let $Q = 2^n = Pq + r$ with $0 \le r < P$, and let $Q_0 = Pq$.

(a) If Py is not a multiple of Q, then

$$\frac{P \operatorname{rob}(y) = \frac{1}{Q^2} \|\Upsilon(y)\|^2}{r \sin^2\left(\frac{\pi P y}{Q} \left(\frac{Q_0}{P} + 1\right)\right) + (P - r) \sin^2\left(\frac{\pi P y}{Q} \cdot \frac{Q_0}{P}\right)}{Q^2 \sin^2\left(\frac{\pi P y}{Q}\right)}.$$

(b) If Py is a multiple of Q, then

$$\operatorname{Prob}(y) = \frac{1}{Q^2} \|\Upsilon(y)\|^2 = \frac{r(Q_0 + P)^2 + (P - r)Q_0^2}{Q^2 P^2}.$$

Proof. See pp. 145-146.

=

Corollary If $Q/P \in \mathbb{N}$, then

$$\operatorname{Prob}(y) = \begin{cases} 0 & \text{if } Py \neq 0 \pmod{Q}, \\ 1/P & \text{if } Py = 0 \pmod{Q}. \end{cases}$$

Remark Only those $y \in \{0, ..., Q - 1\}$ satisfying y = Pr has high Prob(y). (cf. Exercise 6.3.)

Limitation One may do a number of measurements to determine P by finding the minimum distance between those $|y\rangle$ with high probability. But this is impractical if N is large.

$$\left(\frac{m^2}{m^2} \right) \left(\frac{m^2}{m^2} \right)$$

§8.5 Continued Fractions and Order Finding (Details)

We use the continued fractions representation of a rational number $x = [a_0, \ldots, a_q].$

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots + \frac{1}{a_q}}}}.$$

Example: $\frac{17}{47} = [0, 2, 1, 3, 4]$. Think about the gcd calculation of (17/47).

An algorithm for finding the order P of $m^x \pmod{N}$.

- 1. Find the continued fraction expansion $[a_0, a_1, \dots a_M]$ of y/Q. We always have $a_0 = 0$ since y/Q < 1.
- 2. Let $p_0 = a_0$ and $q_0 = 1$.
- 3. Let $p_1 = a_1 p_0 + 1$ and $q_1 = a_1 q_0$.
- 4. Let $p_i = a_i p_{i-1} + p_{i-2}$ and $q_i = a_i q_{i-1} + q_{i-2}$ for $2 \le i \le M$. We obtain the sequence $(p_0, q_0), (p_1, q_1), \dots, (p_M, q_M)$. It can be shown that p_j/q_j is the *j*th convergent of y/Q.
- 5. Find the smallest (unique) k with $0 \leq k \leq M$ such that $|p_k/q_k y/Q| < 1/(2Q).$
- 6. The order is found as $P = q_k$.

Example 8.2 Let $N = 799, Q = 2^{20} = 1048576$ and m = 7. The error bound is $1/(2Q) = 4.76837 * 10^{-7}$. Suppose we obtain y = 8548 as a measurement outcome of the first register. We expect that y/Q is an approximation of n/P for some $n \in \mathbb{N}$.

- 1. The continued fraction expansion of 8548/1048576 is [0, 122, 1, 2, 44, 5, 3] and M = 6.
- 2. Let $p_0 = a_0 = 0$ and $q_0 = 1$.
- 3. We obtain $p_1 = a_1p_0 + 1 = 122 * 0 + 1 = 1$ and $q_1 = a_1q_0 = 122 * 1 = 122$. We have

 $|p_1/q_1 - y/Q| = |1/122 - 8548/1048576| = 4.47133 \times 10^{-5} > 1/(2Q).$

4. Let $p_2 = a_2 p_1 + p_0 = 1$, $q_2 = a_2 q_1 + q_0 = 123$ and

 $|p_2/q_2 - y/Q| = |1/123 - 8548/1048576| = 2.1 * 10^{-5} > 1/(2Q).$

5. Let $p_3 = a_3p_2 + p_1 = 3$, $q_3 = a_3q_2 + q_1 = 368$ and

$$|p_3/q_3 - y/Q| = |3/368 - 8548/1048576| = 1.65856 * 10^{-7} \le 1/(2Q).$$

We have obtained k = 3.

6. The order is found to be $P = q_3 = 368$.

Proposition 8.2 If $y \in \{0, ..., Q-1\}$ satisfies $|d/P - y/Q| \le 1/2Q$ with $gcd(P, d) = 1\}$, then the algorithm will determine P.

§8.6 Modular Exponential Function

To that the Shor's algorithm is polynomial time, one needs to implement the computation of $f(x) = m^x$ efficiently using quantum gates. This can be done as shown in Section 8.6. The implementation is done in the following steps.

- 1. Adder, which outputs a + b given non-negative integers a and b.
- 2. Modular adder, which outputs $a + b \pmod{N}$.
- 3. Modular multiplexer, which outputs $ab \pmod{N}$.
- 4. Modular exponential function, which outputs $m^x \pmod{N}$.