Math 410 Quantum Computing C.K. Li Chapter 8

§ 8.1 RSA
Designers: Ron Rivest, Adi Shamir, and Leonard Adleman, 1977.

Basic assumption. Factorization of N = pq for two prime numbers p

and ¢ are hard to do.

Public key crypto-system. Bob (the bank, VISA card co.) can an-
nounce a public key for customers (Alice) to encrypt their message
and send it to Bob via a public channel, and Bob can easily decrypt

the message.

Example Factor the following numbers into N = pq.
45878443254366745
7536576836238936804738907362515346578697687343
753657683628743673389368047389675407362518902115346578697687



—_—

Mathematical Background

e FEuclidean Algorithm Let a,b be positive integer. There are

unique pair of integers (g, r) such that b = aq + r.

e Fermet’s Little Theorem If p is an odd prime, and a € Z is

not a multiple of p, then

1= 1 (mod p). — /I, Cﬂ?y' —) )

e Use the notatiop Z, = {[0],...,[p — 1]}. 1P = [1] when-
ever [j] # [0]. > >
See the nice proof in the textbook.

e Let N = pq for two odd primes p, q. Then for every [e] in the

set ‘/
Lpg=1l3] 2 1@5 a multiple of p or ¢},

2D

An senflfc = .\Bob can then recover b Computin X4_‘] / g
inff( AV v ‘ZJ_I <Q , J - \)




RSA Scheme

Step 1 Bob: Let N = pq, and let e < N be relatively prime to
(p —1)(¢ — 1). Here e is known as the exponent, and release N and

e. Then compute the modular inverse d of e and keeps d secret.

Step 2 Alice: To send Bob a message represented as a number m,
encode the message m by m¢ and send it through an open/public

channel.

Step 3 Bob: Decode the message by applying (m€)¢ = m (mod N).



Example 1. Let (p,q) = (61,53) and N = 3233.
2. The groups of units has (p — 1)(¢ — 1) = 780 elements.

3. For instance e = 17 is a unit, and d = 413 satisfies
ed =1 (mod N).

B

. Public key (N, e) = (3233,17).

5. Alice sends a number (message) m as
c¢(m) = m® (mod 3233) with ¢(m) < 3233.

6. Bob decrypts c(m) as m = ¢(m)? (mod 3233).
For instance if m = 65, then ¢ = 65'7 = 2790((mod 3233).
Then Bob computes 279043 = 65((mod 3233).



§ 8.2 Factorization Algorithy _

\/St/ 1 Let N befejven, Pdke a random m <|N a l/\) j
compute Bed fﬂﬂ : i@; he Euclidean Algorithm . ‘
Ty > 1, (e are extremely—tuckil 1f not. go to Step 2. ) )
: — \ @
Step 2/Define fy : N — N by a (mod N). \/‘/

 E— =~ ezl )

/ind the smallestP-srehthatTm Q \
(That is, ﬁndlng the order/period of m in Uy, ) ,. )

he guantum part!) ——— =

(hi

Step 3 If P is odd, it cannot be usedt—Goack—toStep 1. ‘) o

Else, go to Step 4.
Step JP is even, then lec, L )

(mP/? ~1)(m”? + 1) = m® ~1=0 (mod N). A :
Ifmp/Qtlz/O(mod N), then gcd(mP/Q—l,N)Zl; - ﬁ‘,r\
go back to Step 1. (1\

'If P/2+17é0( od en /6 er"*\%

has a p eM?]D
1 (mod N) as P 1s the order of m,

= ged(m?/? —1,N) to get p 0

Example LeZ]? = 799. S >
Stgp 1. Choose m = 7. / %./)

Sgep 2. Then (by quantum co uter or conve tlona
computer) that P @ the smallest 34

positive number such that 77 =1 ((mod 799)). j[ —_
Step 3. S P/2 = 18T Then = ( (‘«N\NQ W‘i‘b
718 _1)(7184 od 799)r L~
Step 4. Now, gedf([7'8% 41, 799) )= 17 £ 1.
So, we are gosd%i‘d‘d:o‘{ amely, 799 = 17 - 47. W
[In fact, gC({(7184 -1, i99) =47]

v A \(S) IV J#



§ 8.3 - 8.5 Shor’s Algorithm
designed by Peter Shor (1994).

Complexity: The time taken is polynomial ifi log N, /which is
the size of the input). Specifically it takes quantum gates of order
O((logN)?(loglogN ) (logloglogN')) using fast multiplication.

This is almost exponentially faster than the most efficient known

classical factori T ;

e general number field sieve:

\)

demonstrated by a group at IBM,

__J

e In 2001, Shor’s algorith

who factored 15 int,

a quantum compute

R implementation of

qubits.

e After IBM’s implementation, two independent groups imple-
mented Shor’s algorithm using photonic qubits, emphasizing

that multi-qubit entanglement was observed when running the
Coe—

Shor’s algorithm circuits.

e In 2012, the factorization of 15 was performed with solid-state

qubits. Also in 2012, the factorization of 21 was achieved,

setting the record for the largest number factored with Shor’s

algorithm.

e In 2019 an attempt was made to factor the number 35 using

hor’s algorithm on an IBM @Q System One, but the algorithm

iled due to ﬁumulating errors.E

-



e In April 2012, the factorization of 143(= 11 x 13) was achieved,

although this used adiabatic quantum computation rather

L

than Shor’s algorithm.

e In November 2014, it was discovered that this 2012 adiabatic

quantum computation had also factored larger numbers, the

~—
largest being 56153 = 233 x 241{ D W

e Using additional mathematical idea,IGrébner basis, [researchers
managed to factor 223357 :/401 X 5b7 ?n 2017
v oV
e In 2018, in the paper/“*Quantum Anneali¥g for\Prime Factor-
factor 15, 143, 59989 =

239 x 251, and 376 =571 x 659 uding 4, 12, 59, and 94

logical qubits.

ization”, researchers showed how

—



Let N = pq, and choose n so that/f‘CQ m< 2N2)so that

S, = {0,...,Q — 1} with Q@ = 2". Define f : S, — Z/NZ by
f(a) =m® (mod N). Apply the following.

Step 2.0 Set up |¢g) = [0)|0) in S, ® Sp.

Step 2.1 Apply QFT to the first re@?ter to get

|91) 0) ® |0).
Step 2.2 Apply f using the 1L
Uslr) = [¥n) =

s = ZTIw f ZHT ) 19) ((Z)f” -
l‘—

Step 2.4 Measure the first register. The probability of y € b, will

be
bro } 2||T ||2 2|Zwbe|2

Qi the state collapses to |y)([| T (y)||/Q), where w = ¢>7/<.

Step 2.5 Find the order P from the measurement outcome.

~F F
1

o el [ Ur [ e man) LS i)

Quantum cirenit to find the order of f(x) = m® mod N.



larger.

Remarks n < Zf
2. In general,

Q is cl¥se to an integer
c ) '

3. By the theory of of M of rational number, we _~

need to find d/s such that S—

if (wpy is near :l:l 1
o ?

S yP

ld/s —y/QI< 1/(2Q), gcd(d,s =1, s<N.

4. So, if f ,' f(:c + 3) then @not try m® to get other




§8.4 Probability Distribution (Details) Z % >

Proposition 8.1 Let@ @rith 0 <r < P, and let

Qo = Pq.
(a) If Py is not a multiple of @, then

Frob(y) = C;QHT(Q)HQ \ ‘/Q &

7 sin? (%Py (%+1)>+(P—r)sin2 (%Py-%)
2.in2 (TPy '
— (%)

(b) If Py is a multiple of @, then

r(Qo+ P)?+ (P —1)Q3

1
Prob(y) = 5[ T()[? =
Q? Q2P2
Proof. See pp. 145-146. U -

-

Corollary If Q/P € N, then —
0 if Py#0 d
Prob(y) — 1 y # ( mo Q)7
1/P if Py=0(mod Q).

Remark Only those y € {0,...,Q — 1} satisfying y = Pr has high
Prob(y). (cf. Exercise 6.3.)

Limitation One may do a number of measurements to determine
P by finding the minimum distance between those |y) with high
probability. But this is impractical if IV is large.



§8.5 Continued Fractions and Order Finding (Details)
We use the continued fractions representation of a rational num-

ber z = [ao, . .., aq].

Example: }1—; =10,2,1,3,4].
Think about the ged calculation of (17/47).



An algorithm for finding the order P of m* (mod N).
1. Find the continued fraction expansion [ag, a1, ...ap] of y/Q.
We always have ap = 0 since y/Q < 1.
2. Let pg = ap and gy = 1.
3. Let p1 = a1pg + 1 and q1 = a1qo.

4. Let p; = a;pi—1 + pi—2 and ¢; = a;qi—1 + gi—2 for 2 <i < M.
We obtain the sequence (po, o), (P1,q1); -, (Pr; qar)-

It can be shown that p;/g; is the jth convergent of y/Q.

5. Find the smallest (unique) k with 0 < k < M such that |px/qr—
y/Ql <1/(2Q).

6. The order is found as P = gy.



Example 8.2 Let N = 799,Q = 2?0 = 1048576 and m = 7. The
error bound is 1/(2Q) = 4.76837x10~". Suppose we obtain y = 8548

as a measurement outcome of the first register. We expect that y/Q

is an approximation of n/P for some n € N.

1.

The continued fraction expansion of 8548/1048576 is
[0,122,1,2,44,5,3] and M = 6.

. Let pg = ag =0 and ¢y = 1.

. We obtain p; = a1po+1=122%x04+1 =1 and q1 = a1qy =

122 ¥ 1 = 122. We have

Ip1/q1—y/Q = |1/122—8548,/1048576] = 4.47133%107° > 1/(2Q).

. Let po = agp1 +po =1, g2 = azq1 + qo = 123 and

Ip2/q2 —y/Q| = |1/123 — 8548 /1048576| = 2.1x107° > 1/(2Q).

. Ler p3 = asps + p1 = 3, g3 = azqs + q1 = 368 and

Ips/as—y/Q| = |3/368—8548/1048576| = 1.65856x10~7 < 1/(2Q).

We have obtained k = 3.

. The order is found to be P = g3 = 368.



Proposition 8.2 If y € {0,...,Q — 1} satisfies |[d/P —y/Q| < 1/2Q
with ged(P,d) = 1}, then the algorithm will determine P.

§8.6 Modular Exponential Function

To that the Shor’s algorithm is polynomial time, one needs to
implement the computation of f(z) = m® efficiently using quantum
gates. This can be done as shown in Section 8.6. The implementation

is done in the following steps.

1. Adder, which outputs a + b given non-negative integers a and
b.

2. Modular adder, which outputs a + b (mod N).
3. Modular multiplexer, which outputs ab (mod N).

4. Modular exponential function, which outputs m® (mod N).



