
Math 410 Quantum Computing C.K. Li Chapter 8

§ 8.1 RSA

Designers: Ron Rivest, Adi Shamir, and Leonard Adleman, 1977.

Basic assumption. Factorization of N = pq for two prime numbers p

and q are hard to do.

Public key crypto-system. Bob (the bank, VISA card co.) can an-

nounce a public key for customers (Alice) to encrypt their message

and send it to Bob via a public channel, and Bob can easily decrypt

the message.

Example Factor the following numbers into N = pq.

45878443254366745

7536576836238936804738907362515346578697687343

753657683628743673389368047389675407362518902115346578697687

Mathematical Background

� Euclidean Algorithm Let a, b be positive integer. There are

unique pair of integers (q, r) such that b = aq + r.

� Fermet’s Little Theorem If p is an odd prime, and a ∈ Z is

not a multiple of p, then

ap−1 ≡ 1 (mod p).

� Use the notation Zp = {[0], . . . , [p− 1]}. Then [j]p = [1] when-

ever [j] ̸= [0].

See the nice proof in the textbook.

� Let N = pq for two odd primes p, q. Then for every [e] in the

set

Z∗
pq = {[j] : j is not a multiple of p or q},

there is a unique [d] ∈ Z∗
pq such that [e][d] = [1].

As a result, for any m ∈ {0, . . . , N − 1}, if me is given, then

[m](ed) = [m].

� So, Bob can announce e in public. If Alice wants to send m,

she can send c = me. Bob can then recover m by computing

[c]d = [m](ed) = [m].

RSA Scheme

Step 1 Bob: Let N = pq, and let e < N be relatively prime to

(p− 1)(q − 1). Here e is known as the exponent, and release N and

e. Then compute the modular inverse d of e and keeps d secret.

Step 2 Alice: To send Bob a message represented as a number m,

encode the message m by me and send it through an open/public

channel.

Step 3 Bob: Decode the message by applying (me)d = m (mod N).

Example 1. Let (p, q) = (61, 53) and N = 3233.

2. The groups of units has (p− 1)(q − 1) = 780 elements.

3. For instance e = 17 is a unit, and d = 413 satisfies

ed ≡ 1 (mod N).

4. Public key (N, e) = (3233, 17).

5. Alice sends a number (message) m as

c(m) = me (mod 3233) with c(m) < 3233.

6. Bob decrypts c(m) as m = c(m)d (mod 3233).

For instance if m = 65, then c = 6517 = 2790((mod 3233).

Then Bob computes 2790413 = 65((mod 3233).

§ 8.2 Factorization Algorithm

Step 1 Let N be given. Take a random m < N and

compute gcd(m,N) = g by the Euclidean Algorithm.

If g > 1, we are extremely lucky! If not, go to Step 2.

Step 2 Define fN : N → N by a = ma (mod N).

Find the smallest P such that mP = 1 (mod N).

(That is, finding the order/period of m in U∗
N .)

(This is the quantum part!)

Step 3 If P is odd, it cannot be used. Go back to Step 1.

Else, go to Step 4.

Step 4 If P is even, then

(mP/2 − 1)(mP/2 + 1) = mP − 1 = 0 (mod N).

If mP/2 + 1 = 0 (mod N), then gcd(mP/2 − 1, N) = 1;

go back to Step 1.

If mP/2 + 1 ̸= 0 (mod N), then

mP/2 − 1 has a prime factor of N .

[Note that mP/2 ̸= 1 (mod N) as P is the order of m.]

Proceed to Step 5.

Step 5 Compute d = gcd(mP/2 − 1, N) to get p or q.

Example Let N = 799.

Step 1. Choose m = 7.

Step 2. Then (by quantum computer or conventional

computer) that P = 368 is the smallest

positive number such that 7P = 1 ((mod 799)).

Step 3. Set P/2 = 184. Then

(7184 − 1)(7184 + 1) = 0 (mod 799).

Step 4. Now, gcd(7184 + 1, 799) = 17 ̸= 1.

So, we are good and done, namely, 799 = 17 · 47.
[In fact, gcd(7184 − 1, 799) = 47.]

§ 8.3 - 8.5 Shor’s Algorithm

designed by Peter Shor (1994).

Complexity: The time taken is polynomial in logN , which is

the size of the input). Specifically it takes quantum gates of order

O((logN)2(loglogN)(logloglogN)) using fast multiplication.

This is almost exponentially faster than the most efficient known

classical factoring algorithm, the general number field sieve:(
e1.9(logN)1/3(log logN)2/3

)
.

� In 2001, Shor’s algorithm was demonstrated by a group at IBM,

who factored 15 into 3 × 5, using an NMR implementation of

a quantum computer with 7 qubits.

� After IBM’s implementation, two independent groups imple-

mented Shor’s algorithm using photonic qubits, emphasizing

that multi-qubit entanglement was observed when running the

Shor’s algorithm circuits.

� In 2012, the factorization of 15 was performed with solid-state

qubits. Also in 2012, the factorization of 21 was achieved,

setting the record for the largest number factored with Shor’s

algorithm.

� In 2019 an attempt was made to factor the number 35 using

Shor’s algorithm on an IBM Q System One, but the algorithm

failed due to cumulating errors.

� In April 2012, the factorization of 143(= 11×13) was achieved,

although this used adiabatic quantum computation rather

than Shor’s algorithm.

� In November 2014, it was discovered that this 2012 adiabatic

quantum computation had also factored larger numbers, the

largest being 56153 = 233× 241.

� Using additional mathematical idea, Gröbner basis, researchers

managed to factor 223357 = 401× 557 in 2017

� In 2018, in the paper “Quantum Annealing for Prime Factor-

ization”, researchers showed how to factor 15, 143, 59989 =

239 × 251, and 376289 = 571 × 659 using 4, 12, 59, and 94

logical qubits.

Let N = pq, and choose n so that N2 ≤ 2n < 2N2 so that

Sn = {0, . . . , Q − 1} with Q = 2n. Define f : Sn → Z/NZ by

f(a) = ma (mod N). Apply the following.

Step 2.0 Set up |ψ0⟩ = |0⟩|0⟩ in Sn ⊗ Sn.

Step 2.1 Apply QFT to the first register to get

|ψ1⟩ = T |0⟩ ⊗ |0⟩.

Step 2.2 Apply f using the unitary Uf so that

Uf |ψ1⟩ = |ψ1⟩ = 1√
Q

∑Q−1
x=0 |x⟩|f(x)⟩.

Step 2.3 Apply QFT to the first register to get

Υ(y) =

Q−1∑
x=0

w−xy
n |f(x)⟩

and

|ψ3⟩ =
1

Q

Q−1∑
x=0

T |x⟩|f(x)⟩ = 1

Q

Q−1∑
y=0

∥Υ(y)∥ |y⟩ |Υ(y)⟩
∥Υ(y)∥

.

Step 2.4 Measure the first register. The probability of y ∈ Sn will

be

Prob(y) = Q−2∥Υ(y)∥2 = Q−2|
∑
b

wbPy|2,

and the state collapses to |y⟩(∥Υ(y)∥/Q), where w = e2πi/Q.

Step 2.5 Find the order P from the measurement outcome.

Remarks

1. If f is periodic, f(x) = f(x + P) we see that ∥Υ(y)∥2/Q2 is

larger.

2. In general, if (wPy) is near ±1, i.e., yP/Q is close to an integer

c.

3. By the theory of of continued fractions of rational number, we

need to find d/s such that

|d/s− y/Q| ≤ 1/(2Q), gcd(d, s) = 1, s < N.

4. So, if f(x) = f(x + s) then s = P ; if not, try mx to get other

fraction d′/s′ to approximate y/Q.

§8.4 Probability Distribution (Details)

Proposition 8.1 Let Q = 2n = Pq + r with 0 ≤ r < P , and let

Q0 = Pq.

(a) If Py is not a multiple of Q, then

Prob(y) =
1

Q2
∥Υ(y)∥2

=
r sin2

(
πPy
Q

(
Q0

P + 1
))

+ (P − r) sin2
(
πPy
Q · Q0

P

)
Q2 sin2

(
πPy
Q

) .

(b) If Py is a multiple of Q, then

Prob(y) =
1

Q2
∥Υ(y)∥2 = r(Q0 + P)2 + (P − r)Q2

0

Q2P 2
.

Proof. See pp. 145-146. □

Corollary If Q/P ∈ N, then

Prob(y) =

{
0 if Py ̸= 0 (mod Q),

1/P if Py = 0 (mod Q).

Remark Only those y ∈ {0, . . . , Q − 1} satisfying y = Pr has high

Prob(y). (cf. Exercise 6.3.)

Limitation One may do a number of measurements to determine

P by finding the minimum distance between those |y⟩ with high

probability. But this is impractical if N is large.

§8.5 Continued Fractions and Order Finding (Details)

We use the continued fractions representation of a rational num-

ber x = [a0, . . . , aq].

x = a0 +
1

a1 +
1

a2+
1

...+ 1
aq

.

Example: 17
47 = [0, 2, 1, 3, 4].

Think about the gcd calculation of (17/47).

An algorithm for finding the order P of mx (mod N).

1. Find the continued fraction expansion [a0, a1, . . . aM] of y/Q.

We always have a0 = 0 since y/Q < 1.

2. Let p0 = a0 and q0 = 1.

3. Let p1 = a1p0 + 1 and q1 = a1q0.

4. Let pi = aipi−1 + pi−2 and qi = aiqi−1 + qi−2 for 2 ≤ i ≤M .

We obtain the sequence (p0, q0), (p1, q1), . . . , (pM , qM).

It can be shown that pj/qj is the jth convergent of y/Q.

5. Find the smallest (unique) k with 0 ≤ k ≤M such that |pk/qk−
y/Q| < 1/(2Q).

6. The order is found as P = qk.

Example 8.2 Let N = 799, Q = 220 = 1048576 and m = 7. The

error bound is 1/(2Q) = 4.76837∗10−7. Suppose we obtain y = 8548

as a measurement outcome of the first register. We expect that y/Q

is an approximation of n/P for some n ∈ N.

1. The continued fraction expansion of 8548/1048576 is

[0, 122, 1, 2, 44, 5, 3] and M = 6.

2. Let p0 = a0 = 0 and q0 = 1.

3. We obtain p1 = a1p0 + 1 = 122 ∗ 0 + 1 = 1 and q1 = a1q0 =

122 ∗ 1 = 122. We have

|p1/q1−y/Q = |1/122−8548/1048576| = 4.47133∗10−5 > 1/(2Q).

4. Let p2 = a2p1 + p0 = 1, q2 = a2q1 + q0 = 123 and

|p2/q2−y/Q| = |1/123−8548/1048576| = 2.1∗10−5 > 1/(2Q).

5. Ler p3 = a3p2 + p1 = 3, q3 = a3q2 + q1 = 368 and

|p3/q3−y/Q| = |3/368−8548/1048576| = 1.65856∗10−7 ≤ 1/(2Q).

We have obtained k = 3.

6. The order is found to be P = q3 = 368.

Proposition 8.2 If y ∈ {0, . . . , Q− 1} satisfies |d/P − y/Q| ≤ 1/2Q

with gcd(P, d) = 1}, then the algorithm will determine P .

§8.6 Modular Exponential Function

To that the Shor’s algorithm is polynomial time, one needs to

implement the computation of f(x) = mx efficiently using quantum

gates. This can be done as shown in Section 8.6. The implementation

is done in the following steps.

1. Adder, which outputs a + b given non-negative integers a and

b.

2. Modular adder, which outputs a+ b (mod N).

3. Modular multiplexer, which outputs ab (mod N).

4. Modular exponential function, which outputs mx (mod N).

