Math 410 Quantum Computing C.K. Li Chapter 8

§ 8.1 RSA
Designers: Ron Rivest, Adi Shamir, and Leonard Adleman, 1977.

Basic assumption. Factorization of N = pq for two prime numbers p

and ¢ are hard to do.

Public key crypto-system. Bob (the bank, VISA card co.) can an-
nounce a public key for customers (Alice) to encrypt their message
and send it to Bob via a public channel, and Bob can easily decrypt

the message.

Example Factor the following numbers into N = pq.
45878443254366745
7536576836238936804738907362515346578697687343
753657683628743673389368047389675407362518902115346578697687

—_—

Mathematical Background

e FEuclidean Algorithm Let a,b be positive integer. There are

unique pair of integers (g, r) such that b = aq + r.

e Fermet’s Little Theorem If p is an odd prime, and a € Z is

not a multiple of p, then

1= 1 (mod p). — /I, Cﬂ?y' —))

e Use the notatiop Z, = {[0],...,[p — 1]}. 1P = [1] when-
ever [j] # [0]. > >
See the nice proof in the textbook.

e Let N = pq for two odd primes p, q. Then for every [e] in the

set ‘/
Lpg=1l3] 2 1@5 a multiple of p or ¢},

2D

An senflfc = .\Bob can then recover b Computin X4_‘] / g
inff(AV v ‘ZJ_I <Q , J - \)

RSA Scheme

Step 1 Bob: Let N = pq, and let e < N be relatively prime to
(p —1)(¢ — 1). Here e is known as the exponent, and release N and

e. Then compute the modular inverse d of e and keeps d secret.

Step 2 Alice: To send Bob a message represented as a number m,
encode the message m by m¢ and send it through an open/public

channel.

Step 3 Bob: Decode the message by applying (m€)¢ = m (mod N).

Example 1. Let (p,q) = (61,53) and N = 3233.
2. The groups of units has (p — 1)(¢ — 1) = 780 elements.

3. For instance e = 17 is a unit, and d = 413 satisfies
ed =1 (mod N).

B

. Public key (N, e) = (3233,17).

5. Alice sends a number (message) m as
c¢(m) = m® (mod 3233) with ¢(m) < 3233.

6. Bob decrypts c(m) as m = ¢(m)? (mod 3233).
For instance if m = 65, then ¢ = 65'7 = 2790((mod 3233).
Then Bob computes 279043 = 65((mod 3233).

§ 8.2 Factorization Algorithy _

\/St/ 1 Let N befejven, Pdke a random m <|N a l/\) j
compute Bed fﬂﬂ : i@; he Euclidean Algorithm . ‘
Ty > 1, (e are extremely—tuckil 1f not. go to Step 2.))
: — \ @
Step 2/Define fy : N — N by a (mod N). \/‘/

 E— =~ ezl)

/ind the smallestP-srehthatTm Q \
(That is, ﬁndlng the order/period of m in Uy,) ,.)

he guantum part!) ——— =

(hi

Step 3 If P is odd, it cannot be usedt—Goack—toStep 1. ‘) o

Else, go to Step 4.
Step JP is even, then lec, L)

(mP/? ~1)(m”? + 1) = m® ~1=0 (mod N). A :
Ifmp/Qtlz/O(mod N), then gcd(mP/Q—l,N)Zl; - ﬁ‘,r\
go back to Step 1. (1\

'If P/2+17é0(od en /6 er"*\%

has a p eM?]D
1 (mod N) as P 1s the order of m,

= ged(m?/? —1,N) to get p 0

Example LeZ]? = 799. S >
Stgp 1. Choose m = 7. / %./)

Sgep 2. Then (by quantum co uter or conve tlona
computer) that P @ the smallest 34

positive number such that 77 =1 ((mod 799)). j[—_
Step 3. S P/2 = 18T Then = ((‘«N\NQ W‘i‘b
718 _1)(7184 od 799)r L~
Step 4. Now, gedf([7'8% 41, 799))= 17 £ 1.
So, we are gosd%i‘d‘d:o‘{ amely, 799 = 17 - 47. W
[In fact, gC({(7184 -1, i99) =47]

v A \(S) IV J#

§ 8.3 - 8.5 Shor’s Algorithm
designed by Peter Shor (1994).

Complexity: The time taken is polynomial ifi log N, /which is
the size of the input). Specifically it takes quantum gates of order
O((logN)?(loglogN) (logloglogN')) using fast multiplication.

This is almost exponentially faster than the most efficient known

classical factori T ;

e general number field sieve:

\)

demonstrated by a group at IBM,

__J

e In 2001, Shor’s algorith

who factored 15 int,

a quantum compute

R implementation of

qubits.

e After IBM’s implementation, two independent groups imple-
mented Shor’s algorithm using photonic qubits, emphasizing

that multi-qubit entanglement was observed when running the
Coe—

Shor’s algorithm circuits.

e In 2012, the factorization of 15 was performed with solid-state

qubits. Also in 2012, the factorization of 21 was achieved,

setting the record for the largest number factored with Shor’s

algorithm.

e In 2019 an attempt was made to factor the number 35 using

hor’s algorithm on an IBM @Q System One, but the algorithm

iled due to ﬁumulating errors.E

-

e In April 2012, the factorization of 143(= 11 x 13) was achieved,

although this used adiabatic quantum computation rather

L

than Shor’s algorithm.

e In November 2014, it was discovered that this 2012 adiabatic

quantum computation had also factored larger numbers, the

~—
largest being 56153 = 233 x 241{ D W

e Using additional mathematical idea,IGrébner basis, [researchers
managed to factor 223357 :/401 X 5b7 ?n 2017
v oV
e In 2018, in the paper/“*Quantum Anneali¥g for\Prime Factor-
factor 15, 143, 59989 =

239 x 251, and 376 =571 x 659 uding 4, 12, 59, and 94

logical qubits.

ization”, researchers showed how

—

Let N = pq, and choose n so that/f‘CQ m< 2N2)so that

S, = {0,...,Q — 1} with Q@ = 2". Define f : S, — Z/NZ by
f(a) =m® (mod N). Apply the following.

Step 2.0 Set up |¢g) = [0)|0) in S, ® Sp.

Step 2.1 Apply QFT to the first re@?ter to get

|91) 0) ® |0).
Step 2.2 Apply f using the 1L
Uslr) = [¥n) =

s = ZTIw f ZHT) 19) ((Z)f” -
l‘—

Step 2.4 Measure the first register. The probability of y € b, will

be
bro } 2||T ||2 2|Zwbe|2

Qi the state collapses to |y)([| T (y)||/Q), where w = ¢>7/<.

Step 2.5 Find the order P from the measurement outcome.

~F F
1

o el [Ur [e man) LS i)

Quantum cirenit to find the order of f(x) = m® mod N.

larger.

Remarks n < Zf
2. In general,

Q is cl¥se to an integer
c) '

3. By the theory of of M of rational number, we _~

need to find d/s such that S—

if (wpy is near :l:l 1
o ?

S yP

ld/s —y/QI< 1/(2Q), gcd(d,s =1, s<N.

4. So, if f ,' f(:c + 3) then @not try m® to get other

§8.4 Probability Distribution (Details) Z % >

Proposition 8.1 Let@ @rith 0 <r < P, and let

Qo = Pq.
(a) If Py is not a multiple of @, then

Frob(y) = C;QHT(Q)HQ \ ‘/Q &

7 sin? (%Py (%+1)>+(P—r)sin2 (%Py-%)
2.in2 (TPy '
— (%)

(b) If Py is a multiple of @, then

r(Qo+ P)?+ (P —1)Q3

1
Prob(y) = 5[T()[? =
Q? Q2P2
Proof. See pp. 145-146. U -

-

Corollary If Q/P € N, then —
0 if Py#0 d
Prob(y) — 1 y # (mo Q)7
1/P if Py=0(mod Q).

Remark Only those y € {0,...,Q — 1} satisfying y = Pr has high
Prob(y). (cf. Exercise 6.3.)

Limitation One may do a number of measurements to determine
P by finding the minimum distance between those |y) with high
probability. But this is impractical if IV is large.

§8.5 Continued Fractions and Order Finding (Details)
We use the continued fractions representation of a rational num-

ber z = [ao, . .., aq].

Example: }1—; =10,2,1,3,4].
Think about the ged calculation of (17/47).

An algorithm for finding the order P of m* (mod N).
1. Find the continued fraction expansion [ag, a1, ...ap] of y/Q.
We always have ap = 0 since y/Q < 1.
2. Let pg = ap and gy = 1.
3. Let p1 = a1pg + 1 and q1 = a1qo.

4. Let p; = a;pi—1 + pi—2 and ¢; = a;qi—1 + gi—2 for 2 <i < M.
We obtain the sequence (po, o), (P1,q1); -, (Pr; qar)-

It can be shown that p;/g; is the jth convergent of y/Q.

5. Find the smallest (unique) k with 0 < k < M such that |px/qr—
y/Ql <1/(2Q).

6. The order is found as P = gy.

Example 8.2 Let N = 799,Q = 2?0 = 1048576 and m = 7. The
error bound is 1/(2Q) = 4.76837x10~". Suppose we obtain y = 8548

as a measurement outcome of the first register. We expect that y/Q

is an approximation of n/P for some n € N.

1.

The continued fraction expansion of 8548/1048576 is
[0,122,1,2,44,5,3] and M = 6.

. Let pg = ag =0 and ¢y = 1.

. We obtain p; = a1po+1=122%x04+1 =1 and q1 = a1qy =

122 ¥ 1 = 122. We have

Ip1/q1—y/Q = |1/122—8548,/1048576] = 4.47133%107° > 1/(2Q).

. Let po = agp1 +po =1, g2 = azq1 + qo = 123 and

Ip2/q2 —y/Q| = |1/123 — 8548 /1048576| = 2.1x107° > 1/(2Q).

. Ler p3 = asps + p1 = 3, g3 = azqs + q1 = 368 and

Ips/as—y/Q| = |3/368—8548/1048576| = 1.65856x10~7 < 1/(2Q).

We have obtained k = 3.

. The order is found to be P = g3 = 368.

Proposition 8.2 If y € {0,...,Q — 1} satisfies |[d/P —y/Q| < 1/2Q
with ged(P,d) = 1}, then the algorithm will determine P.

§8.6 Modular Exponential Function

To that the Shor’s algorithm is polynomial time, one needs to
implement the computation of f(z) = m® efficiently using quantum
gates. This can be done as shown in Section 8.6. The implementation

is done in the following steps.

1. Adder, which outputs a + b given non-negative integers a and
b.

2. Modular adder, which outputs a + b (mod N).
3. Modular multiplexer, which outputs ab (mod N).

4. Modular exponential function, which outputs m® (mod N).

