An invitation to Quantum Computing C.K. Li Week 8

Quantum computing/quantum algorithm

- Use quantum properties (superposition, measurement, etc.) to process/manipulate information.
- One needs to formulate the problem in terms of an n-quit state (register) $\left|\psi_{1}\right\rangle$ in $S_{n}=\left\{0, \ldots, 2^{n-1}\right\}$.

Very often, one has to use additional m-quit state to get the register $\left|\psi_{1}\right\rangle\left|\psi_{2}\right\rangle$.

- Then apply quantum unitary operations $U_{1}, U_{2}, \ldots, U_{k}$ so that a measurement of the resulting state $|\psi\rangle$ will give you useful information with high probability.
- The challenge includes:
* formulation of the problems and the use of other mathematical ideas such as continued fraction, group theory, etc.
* designing efficient quantum operations and address practical issues in implementation.
- Researchers have connected the study to image processing, neopal network, AI, etc.

Let us visit the IBM Q online textbook.

$$
V \cdot \quad \cdot(1
$$

Quantum Information

- Information theory studies the transmission, processing, extraction, and utilization of information.
- Abstractly, information can be thought of as the resolution of uncertainty (from given data).
- Important topics include Entropy, Differential entropy, Conditional entropy, Joint entropy, Mutual information, Conditional mutual information, Relative entropy, Entropy rate, Limiting density of discrete points, Asymptotic equipartition property, Rate-distortion theory, Shannon's source coding theorem, Channel capacity, Noisy-channel coding theorem, Shan-non-Hartley theorem (uncertainty of the given data), Error correction for noisy channels, etc.
- Quantum information science use quantum properties to study information theory.
- Some of these topics and backgrounds are mentioned in the supplementary notes in Week 3.
https://cklixx.people.wm.edu/teaching/QC2021/QC-chapter3.pdf.
- Instead of telling you many different topics with my rather superficial understanding, let me share with you some of my current research topics on quantum tomography, quantum operations for open systems, and quantum error corrections.

- Recall that a measurement of $|\psi\rangle$ associated with a Hermitian matrix A will yield qu eigenvalue of A and change "collapse" $\langle\psi\rangle$ to the or y ending figenstate $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle$ of A with probe-- If one has many identical copies of $|\psi\rangle=\binom{u_{1}}{u_{2}}$,

timate $|(1.0)| \psi)\left.^{2}\right|^{2}$ ard $\mid\left(8,1|\psi \psi|^{2} \geqslant \|_{4} \nu^{2}\right.$ by applying

$\left.1 h_{1}\right|^{2} y=\left[\begin{array}{cc}h_{y}-1 w_{f} \\ 0 & -1 \\ - & 0\end{array}\right]$ One can also estimate $\left|u_{1}+\imath u_{2}\right|^{2} / 2$ and $\left|u_{1}-\left|u_{2}\right|^{2} / 2\right.$ by apply 1 gg measurement a
Then we can estimate $|\psi\rangle$ ($\left.\left.u_{1}\right) M_{1}, M_{n}\right)^{2}$
- In fact, if we consider the pure state

the above procedures give the estimates $\hat{0}$ c c_{x}, c_{y}.spec-
tively.
- The same procedures yield the estimate for general density matrio $\rho \in D_{2}, \longrightarrow$
- The process of estimating a mixed state ρ by apply measurements identical copies of states is called \mid mints $q u a n t u m$ state tomography.

Multi-qubit state tomography using local/measurements

 1 ments operators in

- This is because if two (Hermitian) nhatix $X, Y \neq \mathbf{M}_{4}$ give the same measurements for all matrices $\ln \mathcal{S}_{2}$, the $X-Y=a$
for some
$a \in \mathcal{L}$ for some $a \in \mathscr{\varnothing}$.
- It is interesting to note that one can determine/estimate any (entangled or separable or tensor) state ρ by doing local measurements on 9 measurement bases.
- One can extend the result to an n-quit state ρ using 3^{n} peasurement over $=\left\langle A_{1} \otimes \cdots \otimes A_{\eta}\right): A_{\left.A_{1}, \ldots A_{n} \in\left\{\sigma_{x}, \sigma_{y}, \sigma_{z}\right\}\right\}}$
- We have implemented the scheme using IBM Q computer. The $\left.|\psi\rangle=\psi_{1}\right\rangle \sigma\left|\psi_{2}\right\rangle$ measurement error is terrible!

- Open question.

Can we use fewer than 3^{n} measurement bases if $n \geq 2$?

Use $2^{n}+1$ measurement oases fortoqubit states

- Note that one needs $N^{2}-1$ real d $\$$ a to specific $\rho \in D_{N}$ with $N=2^{n}$.
- Every measurement operator yip $N \odot \neq$ piece of information.
- S., $N+1$ measurement bases measurement bases are needed to estimaddetermine $\rho \in D_{N}$.
- Of course, the measurement operators cannot be all loyal, else we cannot different fate
- We have some success in using IBM Q to carry out the scheme for 2-qubit states, But/here are still much error.

Assisted tomography schemes

- Suppose an n-qubit state $\rho \in D_{N}$ is given with $N=2^{n}$.
- We consider $\sigma \otimes \rho=\left(\begin{array}{cc}\rho & 0 \\ 0 & 0_{N^{2}-N}\end{array}\right) \in D_{N^{2}}$.
- We then apply a suitable measurement basis in $\mathbf{M}_{N^{2}}$, equivalently, choose a suitable unitary $U \in U\left(N^{2}\right)$ and estimate the $N^{2}-1$ diagonal entries of $U(\sigma \otimes \rho) U^{\dagger}$.
- We can then use these daterinin
- Mathematically, it means that $\left.\rho \mapsto \operatorname{diag}\left(U C^{\prime} \otimes \rho\right) U^{\dagger}\right)$ is a (linear) bijection.

Further research

$$
44
$$

- One may use different device to do the measurement. 4
- For example, using NMR, one will get the $(1,2),(1),(6),(2,3),(6,4)$
entries of $\rho \in D_{4}$ in one experimental set up) (Setting up the interactionbetweern the ms in the molecules.)

- Also, if $\sigma \in D_{4}$

U determine σ.

- We stilling are fo find the quantum state $\tilde{\rho}$ which best fits the measurement values.
- One may consider other quantum device, say, linear optics.

Quantum process tomography

- It is also of interested to determine a given quantum process / operation.
- Suppose Φ : $M_{n} \rightarrow M_{m}$. We can determine Φ by testing $\Phi\left(\rho_{j}\right)$ for a linearly independent set $\left\{\rho_{1}, \ldots, \rho_{N^{2}-1}\right\}$ of states in M_{n}.
- It is known that $\Phi: M_{n} \rightarrow M_{m}$ if and only if $C(\Phi)=\frac{1}{m}\left(\Phi\left(E_{i j}\right)\right.$ is a quantum state ρ_{Φ} such that

We are trying to adapt tho techniques in quant
raphy for the study.

- A quantumbperation $\Phi: M \rightarrow M_{n}$ of a closed $s y s t y m h d$ the form $A \mapsto U A U^{\dagger}$. One have to determine U.
In this case, ρ_{Φ} is a pure state, and there may more ficient method to estimate ρ_{Φ}.

