An invitation to Quantum Computing C.K. Li Week 8
Quantum computing/quantum algorithm

e Use quantum properties (superposition, measurement, etc.) to
process/manipulate information.

e One needs to formulate the problem in terms of an n-qubit
state (register) [¢1) in S, ={0,...,2" 1}

e Very often, one has to use additional m-qubit state to get the
register |11)]12).

e Then apply quantum unitary operations Uy, Us, ..., Uy so that
a measurement of the resulting state [¢) will give you useful
information with high probability.

e The challenge includes:

* formulation of the problems and the use of other mathemat-
ical ideas such as continued fraction, group theory, etc.

* designing efficient quantum operations and address practical
issues in implementation.

e Researchers have connected the study to image processing, neu-
ral network, Al, etc.

Let us visit the IBM Q online textbook. M




Quantum Information

e Information theory studies the transmission, processing, ex-
traction, and utilization of information.

e Abstractly, information can be thought of as the resolution of
uncertainty (from given data).

e Important topics include Entropy, Differential entropy, Condi-
tional entropy, Joint entropy, Mutual information, Conditional
mutual information, Relative entropy, Entropy rate, Limit-
ing density of discrete points, Asymptotic equipartition prop-
erty, Rate—distortion theory, Shannon’s source coding theo-
rem, Channel capacity, Noisy-channel coding theorem, Shan-
non-Hartley theorem (uncertainty of the given data), Error
correction for noisy channels, etc.

e (Quantum information science use quantum properties to study
information theory.

e Some of these topics and backgrounds are mentioned in the
supplementary notes in Week 3.

https://cklixx.people.wm.edu/teaching/QC2021/QC-chapter3.pdf.

e Instead of telling you many different topics with my rather
superficial understanding, let me share with you some of my
current research topics on quantum tomography, quantum op-
erations for open systems, and quantum error corrections.
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surements on 9 measurement bases.

e ——

e We have implemented the scheme using IBM Q computer. The
measurement error is terrible!

¢ Open question.

Can we use fewer than 3™ measurement bases if n > 27
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Assisted tomography schemes

e Suppose an n-qubit state p € Dy is given with N = 2™,

We consider o ® p = (g 0 0 ) € Dpe.
N2-N

We then apply a suitable measurement basis in M 2, equiva-
lently, choose a suitable unitary U € U(N?) and estimate the
N2 — 1 diagonal entries of U(c ® p)UT. -

—

We can then use these data—te—determmmme—p-

Mathematically, it means that p +— diag (Ule @ p)UT) is a
(linear) bijection. ] i
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One can use different methods to @lh as \/ \/
e maximum likelihood\- use a suitable penalty function to search
for_/f\/

Inear inversion and best approximation - use least square method

o solve for the Hermitian matrix p attaining the measurement
values, and find the best density matrix p approximating p.

e [projection method - use proj

matrix which is nearest to the linear manifold satis
measurement values.




Further research
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(Setting up the interacti etwi s in the molecules.)
—— i .1 .
So, measuring p apd=tg0 —wit-be-enaugh to estimate p € Dy.

For p € Dgyone may gy ’ {i2 uppey triangular entries of p
dependjelgn linear intSiz ion qr complete ingction of

X/ .
three quits:” So, Ipeasurl .\\’ U T can.detedmine p.

e Also, if 0 € D4we a nes ﬁu @ |0}(0] ® o)UY wil
W‘%mine . B\ ﬂ \
e We sﬂﬁh e o find the quantum sthte p whichbeséfits the

measurement values.

e One may consider other quantum device, say, linear optics.
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e Suppose ® : M,, = M,,. We can determine ® by testing ®(p;)

Quantum process tomography \ 2 T I ) ", L)‘ N
e It is also of interested to determine a given quantum process / " 9
operation. a \g —

for a linearly independent set {p1, ..., pn2_1} of states in M,,. C{3>*
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e It is known that ® : M,, — M,, if and only if C(®) = L (®(E};) g oL
is a quantum state pg such that %\
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