
An invitation to Quantum Computing C.K. Li Week 8

Quantum computing/quantum algorithm

� Use quantum properties (superposition, measurement, etc.) to

process/manipulate information.

� One needs to formulate the problem in terms of an n-qubit

state (register) |ψ1⟩ in Sn = {0, . . . , 2n−1}.

� Very often, one has to use additional m-qubit state to get the

register |ψ1⟩|ψ2⟩.

� Then apply quantum unitary operations U1, U2, . . . , Uk so that

a measurement of the resulting state |ψ⟩ will give you useful

information with high probability.

� The challenge includes:

* formulation of the problems and the use of other mathemat-

ical ideas such as continued fraction, group theory, etc.

* designing efficient quantum operations and address practical

issues in implementation.

� Researchers have connected the study to image processing, neu-

ral network, AI, etc.

Let us visit the IBM Q online textbook.



Quantum Information

� Information theory studies the transmission, processing, ex-

traction, and utilization of information.

� Abstractly, information can be thought of as the resolution of

uncertainty (from given data).

� Important topics include Entropy, Differential entropy, Condi-

tional entropy, Joint entropy, Mutual information, Conditional

mutual information, Relative entropy, Entropy rate, Limit-

ing density of discrete points, Asymptotic equipartition prop-

erty, Rate–distortion theory, Shannon’s source coding theo-

rem, Channel capacity, Noisy-channel coding theorem, Shan-

non–Hartley theorem (uncertainty of the given data), Error

correction for noisy channels, etc.

� Quantum information science use quantum properties to study

information theory.

� Some of these topics and backgrounds are mentioned in the

supplementary notes in Week 3.

https://cklixx.people.wm.edu/teaching/QC2021/QC-chapter3.pdf.

� Instead of telling you many different topics with my rather

superficial understanding, let me share with you some of my

current research topics on quantum tomography, quantum op-

erations for open systems, and quantum error corrections.



Quantum State Tomography

� Recall that a measurement of |ψ⟩ associated with a Hermitian

matrix A will yield an eigenvalue of A and change ”collapse”

|ψ⟩ to the corresponding eigenstate |ϕ1⟩, |ϕ2⟩ of A with proba-

bilities |⟨ϕ1|ψ⟩|2 and |⟨ϕ2|ψ⟩|2.

� If one has many identical copies of |ψ⟩ =

(
u1
u2

)
, one can es-

timate |(1, 0)|ψ⟩|2 = |u1|2 and |(0, 1)ψ⟩|2 = |u2|2 by applying

measurement associated with σz.

One can also estimate |u1+u2|2/2 and |u1−u2|2/2 by applying

measurement associated with σx.

One can also estimate |u1+iu2|2/2 and |u1−iu2|2/2 by applying

measurement associated with σy.

Then we can estimate |ψ⟩.

� In fact, if we consider the pure state

|ψ⟩⟨ψ| = 1

2
(I2+ cxσx+ cyσy + czσz) =

1

2

(
1 + cz cx − icy
cx + icy 1− cz

)
,

the above procedures give the estimates of cz, cx, cy, respec-

tively.

� The same procedures yield the estimate for general density ma-

trix ρ ∈ D2,

� The process of estimating a mixed state ρ by apply measure-

ments to an ensemble of identical copies of states is called

quantum state tomography.



Multi-qubit state tomography using local measurements

� For a 2-qubit state ρ ∈ D4, one can estimate ρ using measure-

ments operators in

S2 = {A1 ⊗A2 : A1, A2 ∈ {σx, σy, σz}}.

� This is because if two (Hermitian) matrix X,Y ∈ M4 give the

same measurements for all matrices in S2, then X − Y = aI

for some a ∈ C.

� It is interesting to note that one can determine/estimate any

(entangled or separable or tensor) state ρ by doing local mea-

surements on 9 measurement bases.

� One can extend the result to an n-qubit state ρ using 3n mea-

surement operators in

S2 = {A1 ⊗ · · · ⊗An : A1, . . . An ∈ {σx, σy, σz}}.

� We have implemented the scheme using IBM Q computer. The

measurement error is terrible!

� Open question.

Can we use fewer than 3n measurement bases if n ≥ 2?



Use 2n + 1 measurement bases for n-qubit states

� Note that one needs N2 − 1 real data to specific ρ ∈ DN with

N = 2n.

� Every measurement operator yield N − 1 piece of information.

� So, N + 1 measurement bases measurement bases are needed

to estimate/determine ρ ∈ DN .

� Of course, the measurement operators cannot be all local, else,

we cannot differentiate

ρ1 = a1I2 ⊗ · · · ⊗ anI2 and ρ2 = b1I2 ⊗ · · · ⊗ bnI2.

� We have some success in using IBM Q to carry out the scheme

for 2-qubit states. But there are still much error.



Assisted tomography schemes

� Suppose an n-qubit state ρ ∈ DN is given with N = 2n.

� We consider σ ⊗ ρ =

(
ρ 0
0 0N2−N

)
∈ DN2 .

� We then apply a suitable measurement basis in MN2 , equiva-

lently, choose a suitable unitary U ∈ U(N2) and estimate the

N2 − 1 diagonal entries of U(σ ⊗ ρ)U †.

� We can then use these data to determine ρ.

� Mathematically, it means that ρ 7→ diag (U(σ ⊗ ρ)U †) is a

(linear) bijection.



Density matrix best fits the measurement values

After getting the measurements of UjρU
†
j for all j, or U(σ⊗ρ)U †,

one needs to find ρ̃ ∈ Dn which give the measurements or best fit

the measurements.

One can use different methods to find ρ̃ such as

� maximum likelihood - use a suitable penalty function to search

for ρ̃,

� linear inversion and best approximation - use least square method

to solve for the Hermitian matrix ρ̂ attaining the measurement

values, and find the best density matrix ρ̃ approximating ρ̂.

� projection method - use projection method to find the density

matrix which is nearest to the linear manifold satisfying the

measurement values.



Further research

� One may use different device to do the measurement.

� For example, using NMR, one will get the (1, 2), (1, 3), (2, 3), (2, 4)

entries of ρ ∈ D4 in one experimental set up.

(Setting up the interaction between the atoms in the molecules.)

So, measuring ρ and UρU † will be enough to estimate ρ ∈ D4.

� For ρ ∈ D8, one may get 8 or 12 upper triangular entries of ρ

depending on linear interaction or complete interaction of the

three quits. So, measuring ρ and UρU † can determine ρ.

� Also, if σ ∈ D4, then a measurement of U(|0⟩⟨0| ⊗ σ)U † will

determine σ.

� We still have to find the quantum state ρ̃ which best fits the

measurement values.

� One may consider other quantum device, say, linear optics.



Quantum process tomography

� It is also of interested to determine a given quantum process /

operation.

� Suppose Φ :Mn →Mm. We can determine Φ by testing Φ(ρj)

for a linearly independent set {ρ1, . . . , ρN2−1} of states in Mn.

� It is known that Φ :Mn →Mm if and only if C(Φ) = 1
m(Φ(Eij)

is a quantum state ρΦ such that

Tr1(ρΦ) =
1

m
(TrΦ(Eij)) =

1

m
Im.

We are trying to adapt the techniques in quantum state tomog-

raphy for the study.

� A quantum operation Φ :Mn →Mn of a closed system has the

form A 7→ UAU †. One have to determine U .

In this case, ρΦ is a pure state, and there may be more efficient

method to estimate ρΦ.


