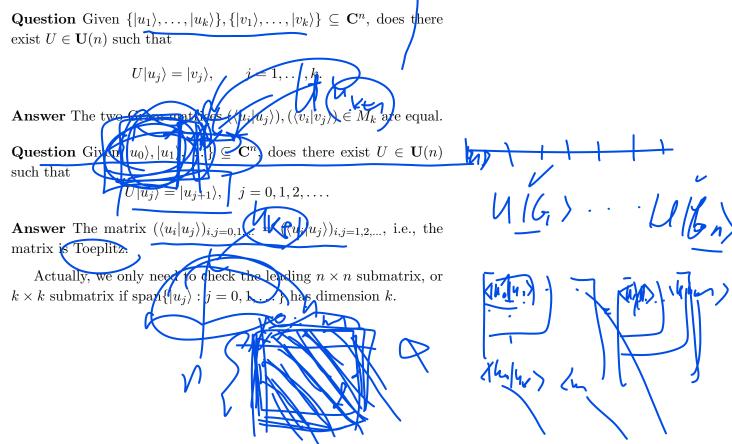


Quantum states with specific images



Results for open systems

Recall that mixed states are density matrices in M_n . A general quantum operation $\Phi: M_n \to M_m$ is a TPCP maps admitting the operator sum representation

$$\Phi(A) = F_1 A F_1^{\dagger} + \dots + F_r A F_r^{\dagger} \quad \text{for all} \quad A \in M_n$$

for some $m \times n$ matrices F_1, \dots, F_r satisfying $F_1^{\dagger} F_1 + \dots + F_r^{\dagger} F_r = I_n$.

".Cⁿ @ C^P) 1:><1; \

The following result is due to A. Chefles, R. Jozsa, and A. Winter,

Theorem Let
$$\{|u_1\rangle, \dots, |u_k\rangle\} \subseteq \mathbb{C}^n$$
 and $\{|v_1\rangle, \dots, |v_k\rangle\} \subseteq \mathbb{C}^m$.
There is a quantum operation $\Phi: M_n \to M_m$ satisfying
 $\Phi(|u_j\rangle\langle u_j|) = |v_j\rangle\langle v_j|$ for all $j = 1, \dots, k$,

if and only if there is a correlation matrix $C = (c_{ij})$ such that

$$(\langle u_i | v_j \rangle) = C \circ (\langle v_i | v_j \rangle),$$

the Schur product (a.k.a. Hadamard or entry-wise product), i.e.,

the Schur product (a.k.a. Hadamard or entry-wise product), i.e.,

$$\langle u_i | u_j \rangle = c_{ij} \langle v_i | v_j \rangle$$
 for all $1 \le i, j \le k$.
 $(u_i, u_j) = c_{ij} \langle v_i | v_j \rangle$ for all $1 \le i, j \le k$.

11 14

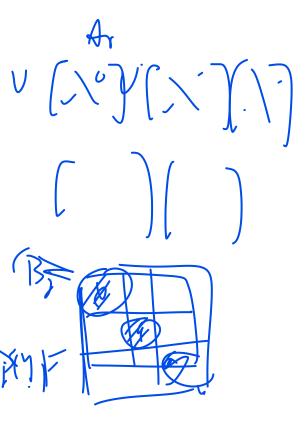
Some general results

In 2012, Z. Huang, C.K. Li, E. Poon and N.S. Sze, obtained some general results for the existence of TPCP map $\Phi(A_j) = B_j$ for $j = 1, \ldots, k$, with $\{A_1, \ldots, A_k\} \subseteq D_n, \{B_1, \ldots, B_k\} \subseteq D_m$. There were results for diagonal matrices and operators by [Li and Y. Poon, 2011], [Hsu, Kuo, Tsai, 2014].

Theorem Let

 $\{A_j = |u_j\rangle\langle u_j| : 1 \le j \le k\} \subseteq D_n \text{ and } \{\underline{B_1, \ldots, B_k}\} \subseteq D_m.$ There is $\Phi : M_n \to M_m$ such that $T(A_j) = B_j$ for $j = 1, \ldots, k$ if and only if there is a purification of $|v_j\rangle\langle v_j|$ of B_j for $j = 1, \ldots, k$ such that $f\langle u_i|u_j\rangle = (\langle v_i|v_j\rangle)$

- The general condition for Φ sending mixed states to mixed states are very technical.
- It depends on the spectral decomposition, solution of certain matrix equations, etc.



More results and questions

- For any $\rho \in D_n, \sigma \in D_m$, the map $A \mapsto (\text{Tr}A)\sigma$ is a TPCP map sending all states to σ .
- Let $A_1, A_2 \in D_n$ $B_1, B_2 \notin D_m$. The condition of the existence of a TPCP map $\Phi: M_n \to M_m$ such that

$$(\Phi(A_1), \Phi(A_2)) = (B_1, B_2)$$
, i.e., $\Phi(A_1 + iA_2) = B_1 + iB_2$

is not known.

• For qubit states, we may assume that A_1, A_2 are pure state. Then Φ exists if and only if

$$\operatorname{Tr}\sqrt{A_1^{1/2}A_2A_1^{1/2}} \le \operatorname{Tr}\sqrt{B_1^{1/2}B_2B_1^{1/2}}.$$

• Suppose $\{A_1, \ldots, A_4\} \subseteq D_2$ are linearly independent. There is a unique linear map satisfying $\Phi(A_j) = B_j$ for $j = 1, \ldots, 4$. It is then easy to determine whether Φ is TPCP.

F(A, Az) Frality

• Suppose $\{A_1, A_2, A_3\}, \{B_1, B_2, B_3\} \subseteq D_2$ such that

 $A_j = |u_j\rangle\langle u_j|$ for j = 1, 2, 3, are linearly independent.

Let $|u_3\rangle = \alpha_1 |u_1\rangle + \alpha_2 |u_2\rangle$, and $\hat{B}_3 = |\alpha_1 u_1\rangle \langle \alpha_2 u_2 |+ |\alpha_2 u_2\rangle \langle \alpha_1 u_1 |$. Then there is a TPCP map sending A_j to B_j for j = 1, 2, 3, if and only if there is $C \in M_2$ such that

$$\operatorname{Tr}(CC^*) = 1 + |\det(C)|^2 \le 2, \ \hat{B}_3 = \operatorname{Re}(\sqrt{B_2}C\sqrt{B_1}),$$
$$\operatorname{Tr}\sqrt{B_2}C\sqrt{B_1} = \langle \alpha_1 u_1 | \alpha_2 u_2 \rangle.$$

- Question. Find a simpler condition.
- Current research with Ray-Kuang Lee. Let $\{\rho_0, \rho_1, \dots\} \subseteq D_n$. Determine TPCP maps Φ such that $\Phi(\rho_j) = \rho_{j+1}$ for $j = 0, 1, \dots$