
Chapter 2 Quantum Mechanics: Hilbert Space Formalism.

Quantum Information Science uses quantum properties to help

store, process, and transmit information. In this chapter, we de-

scribe some basic background on quantum mechanics. We first use

vector states to describe quantum systems. Then we demonstrate

the formulation using density matrices.

Copenhagen interpretation

A1 A vector state |x⟩ is a unit vector in a Hilbert space H (usually

Cn). Linear combinations (superposition) of the physical states

are allowed in the state space.

A2 An observable of a state |x⟩ corresponds to a Hermitian oper-

ators A such that a measurement will change the state |x⟩ to

an eigenstate (eigenvector) |u⟩ of A with a probability |⟨u|x⟩|2.

In the finite dimensional case, suppose the observable and the

state are represented by

A =
n∑

j=1

λj |uj⟩⟨uj | =
n∑

j=1

λjPj ,

and

|x⟩ =
n∑

j=1

cj |uj⟩ ∈ Cn with cj = ⟨uj |x⟩.

When a measurement is applied, the state (wave function)

|x⟩ =
∑n

j=1 cj |uj⟩ becomes (collapses to) |uj⟩ with a prob-

ability |cj |2 = |⟨uj |x⟩|2. (The eigenvalue λj indicates that |x⟩
changes to |uj⟩.)

The complex coefficients c1, . . . , cn are called the probability

amplitude of the state |x⟩ (with respect to the observable as-

sociated with A).
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A3 The time dependence of a state is governed by the Schrödinger

equation

ih̄
d|x⟩
dt

= H|x⟩,

where h̄ is the Planck constant with

h̄= 6.6260700410−34m2kg/s,

and H is a Hermitian operator (matrix) corresponding to the

energy of the system known as the Hamiltonian. In the Schrödinger

equation, if H(t) does not depend on t, then

|x(t)⟩ = e−iHt/h̄|x(0)⟩.

Otherwise,

|x(t)⟩ = exp

(
−i
h̄

∫ t

0
H(s)ds

)
|x(0)⟩.

It is inspiring to think about the 1× 1 case. We can solve

x′(t) = kx(t) so that x(t) = ekx(0).

Remark One may regard |x(0)⟩ changes because the Hamiltonian

H(t) changes according to time. This is known as the Heisenberg

picture of quantum mechanics. One may also assume that the state

|x(t)⟩ is changing according to time. This is known as the Schrödinger

picture.
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Example If

H =
−h̄
2
wσx and |ψ(0)⟩ =

(
1
0

)
so that ih̄

d|ψ⟩
dt

= H|ψ⟩,

then

|ψ(t)⟩ = ((coswt/2)I2 + (i sinwt/2)σx)|ψ(0)⟩

= [(coswt/2)

(
1 0
0 1

)
+ i sinwt/2)

(
0 1
1 0

)
]|ψ(0)⟩

=

(
coswt/2
i sinwt/2

)
.

If we apply the observable A =

(
3 0
0 1

)
, then the measurement

|ψ(t)⟩ will collapse to |e1⟩ =
(
1
0

)
and |e2⟩ =

(
0
1

)
with probabilities

|⟨e1|u1⟩|2 = cos2(wt/2) and |⟨e2|u1⟩|2 = sin2(wt/2), respectively.

If we apply the observable A = 3P1+2P2 with P1 = |u1⟩⟨u1| and

P2 = |u2⟩⟨u2| with |u1⟩ = 1√
2

(
1
i

)
and |u2⟩ = 1√

2

(
1
−i

)
, then the

measurement |ψ(t)⟩ will collapse to |u1⟩ and |u2⟩ with probabilities

|⟨u1|ψ(t)⟩|2 =
1

2
|(1,−i)(cos(wt/2), i sin(wt/2)t|2

= (cos(wt/2) + sin(wt/2))2/2

and

|⟨u2|ψ(t)⟩|2 =
1

2
|(1, i)(cos(wt/2), i sin(wt/2)t|2

= (cos(wt/2)− sin(wt/2))2/2.
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The uncertainty principle

Let Expx(A) = ⟨x|A|x⟩ = µ and Varx(A) = Expx((A − µI)2) =

⟨x|(A− µI)2|x⟩ = ∥(A− µI)|x⟩∥2.

In an deterministic model, the variance of measurements should go

to zero as the apparatus is made very accurate.

Theorem For any observables A and B and for any quantum state

|x⟩, if [A,B] = AB −BA is the commutator of A and B, and

∆(A) =
√
Varx(A) =

√
⟨x|(A− αI)2|x⟩,

where α = ⟨x|A|⟩ is the expectation value, then

∆(A)∆(B) ≥ 1

2
|⟨x|[A,B]|x⟩|.

The equality holds if and only if there is θ ∈ [0, 2π) such that

cos θA|x⟩+ i sin θB|x⟩ = 0.
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Proof. Let Â = A − αI and B̂ = B − βI. Note first that

∆(A)∆(B) =

√
⟨ψ|Â2|ψ⟩

√
⟨ψ|B̂2|ψ⟩ and ⟨ψ|[A,B]|ψ⟩ = ⟨ψ|[Â, B̂]|ψ⟩.

So, we need to show that 4⟨ψ|Â2|ψ⟩⟨ψ|B̂2|ψ⟩ ≥ |⟨ψ|[Â, B̂]|ψ⟩|2. Note
that the matrices

C1 =

(
⟨ψ|Â2|ψ⟩ ⟨ψ|ÂB̂|ψ⟩
⟨ψ|B̂Â|ψ⟩ ⟨ψ|B̂2|ψ⟩

)
and C2 =

(
⟨ψ|Â2|ψ⟩ −⟨ψ|B̂Â|ψ⟩

−⟨ψ|ÂB̂|ψ⟩ ⟨ψ|B̂2|ψ⟩

)
are positive semi-definite as proved by checking that all their prin-

cipal minors are nonnegative using the Cauchy-Schwartz inequality.

Thus, C = C1 + C2 is positive semi-definite and

4⟨ψ|Â2|ψ⟩⟨ψ|B̂2|ψ⟩ − |⟨ψ|[Â, B̂]|ψ⟩|2 = det(C) ≥ 0.

The equality det(C) = 0 holds if and only if C is singular, equiva-

lently, the positive semi-definite matrices C1 and C2 are singular and

share a common null vector. Since C1 and C2 have the same trace,

we see that

(1) C1 = C2 = (tr C1)|u⟩⟨u| for some unit vector |u⟩ ∈ Cn, and

(2) ⟨ψ|ÂB̂|ψ⟩ = −⟨ψ|B̂Â|ψ⟩, i.e., ⟨ψ|{Â, B̂}|ψ⟩ = 0.

Condition (1) implies det(C1) = 0, namely ⟨ψ|Â2|ψ⟩⟨ψ|B̂2|ψ⟩ =

|⟨ψ|ÂB̂|ψ⟩|2. By the Cauchy-Schwartz inequality, Â|ψ⟩ and B̂|ψ⟩
are linearly dependent. Condition (2) implies that ⟨ψ|ÂB̂|ψ⟩ ∈ iR.
So, Â|ψ⟩ and iB̂|ψ⟩ are linearly dependent over R. Thus, there is

θ ∈ [0, 2π) such that cos θÂ|ψ⟩+ i sin θB̂|ψ⟩ is the zero vector. Con-

versely, if cos θÂ|ψ⟩+i sin θB̂|ψ⟩ is the zero vector, one readily checks

that C1 = C2 and det(C1 + C2) = 0. □

Example It is known that [P,Q] = iαh̄I for quantities such as po-

sition and momentum operator, where α is a constant. Then

∆(P )2∆(Q)2 ≥ |αh̄|.

Note that such examples only exists for infinite dimensional op-

erators because of tr (AB −BA) = 0 for matrices.
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Bipartite and multipartite systems

A system may have two components described by two Hilbert

spaces H1 and H2. Then the bipartite system is represented by

H = H1 ⊗H2. A general state in H has the form

|x⟩ =
∑
i,j

cij |e1,i⟩ ⊗ |e2,j⟩ with
∑
i,j

|cij |2 = 1,

where {|er,1⟩, |er,2⟩, . . . } is an orthonormal basis for Hr with r ∈
{1, 2}.

Then {|e1,ie2,j⟩ : i = 1, 2, . . . , j = 1, 2, . . . } is an orthonrmal basis for

H1 ⊗H2.

Example For example, C2 has orthonormal basis {|0⟩, |1⟩} with

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
.

Then C2⊗C2 has orthonormal basis {|00⟩, |01⟩, |10⟩, |11⟩} consisting

of the 4 columns of the identity matrix I4.

Similarly, C2 ⊗C2 ⊗C2 has orthonormal basis {|000⟩, . . . , |111⟩}
consisting of the columns of I8.

In general, if U = [|u1⟩ · · · |um⟩] such that the columns of U form

an orthonormal basis for Cm, and V = [|v1⟩ · · · |vn⟩] such that the

columns of V form an orthonormal basis for Cn, then the columns of

U ⊗ V = [|u1v1⟩ · · · |umvn⟩] form an orthonormal basis for Cm ⊗Cn.

6



Separable states, entangled states, Schmidt decomposition

A state of the form |x⟩ = |x1⟩⊗|x2⟩ is a separable state or a tensor

product state. Otherwise, it is an entangled state.

Example Let

|x⟩ = c00|00⟩+ c01|01⟩+ c10|10⟩+ c11|11⟩ =


c00
c01
c10
c11

 ∈ C2 ⊗ C2.

Question How to detect that it is a tensor state?

Answer Check whether the rows of the matrix C =

(
c00 c01
c10 c11

)
are

multiples of each other. If yes, we can write C =

(
a1
a2

)
(b1 b2)

t for

some unit vectors |u⟩ = (a1, a2)
t, |v⟩ = (b1, b2)

t. Then |x⟩ = |u⟩⊗|v⟩.
If not, |x⟩ is entangled.

Remark Most states in H1 ⊗ H2 are entangled states, which are

most useful for quantum computing.
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Theorem Suppose H1,H2 have finite dimensions, say, m and n.

Every state |x⟩ in H1 ⊗H2 admits a Schmidt decomposition

|x⟩ =
r∑

j=1

sj |uj⟩ ⊗ |vj⟩,

where sj > 0 are the Schmidt coefficients satisfying
∑r

j=1 s
2
j = 1,

r is the Schmidt number of |x⟩, {|u1⟩, . . . , |ur⟩} is an orthonormal

set of H1 and {|v1⟩, . . . , |vr⟩} is an orthonormal set of H2.

Proof. Assume H1 and H2 orthonormal bases {|e1,1, . . . , |e1,m⟩}
and {|e2,1, . . . , |e2,n⟩}. Every state has the form

|x⟩ =
∑
j=1

crs|e1,r⟩ ⊗ |e2,s⟩.

If C has rank one, then C = (a1, . . . , am)t(b1, . . . , bn) so that

C = |u⟩ ⊗ |v⟩ with |u⟩ =
∑m

j=1 aj |e1,j⟩ and |v⟩ =
∑n

j=1 b
∗
j |e2,j⟩.

Because ∥x⟩∥ = 1, we may assume that (a1, . . . , am)t and (b1, . . . , bn)
t

are unit vectors and so are |u⟩, |v⟩.
In general, suppose C = [cij ] has singular decomposition

r∑
j=1

sj |αj⟩⟨|βj | =
r∑

j=1

sjCj ,

where Cj = |αj⟩⟨βj | for j = 1, . . . , r.

One can then use Cj as the coefficient matrix of |xj⟩ to construct

tensor state |xj⟩ = |uj⟩ ⊗ |vj⟩ so that

|x⟩ =
r∑

j=1

sj |xj⟩ =
r∑

j=1

sj |uj⟩ ⊗ |vj⟩. □
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Example Suppose |x⟩ =
∑

i,j cij |e1,ie2,j⟩ ∈ C2 ⊗ C3 with

(cij) = UDV t = d1|u1⟩⟨v1|+ d2|u2⟩⟨v2|,

where

U = 1√
2

(
1 1
i −i

)
, D = 1

5

(
4 0 0
0 3 0

)
, V = 1√

2

1 0 1
1 0 −1

0
√
2 0

.

Then

|x⟩ = 4

5
|u1⟩|v1⟩+

3

5
|u2⟩|v2⟩,

where

|u1⟩ = (1, i)t/
√
2, |u2⟩ = (1,−i)t/

√
2,

|v1⟩ = (1, 1, 0)t/
√
2, |v2⟩ = (0, 0, 1)t.

Remark Extending the results to H1⊗· · ·⊗Hk for k ≥ 3 is an open

problem.
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No-cloning theorem

Theorem (Wootters and Zurek) An unknown quantum system can-

not be cloned by unitary transformations.

Proof. Suppose there would exist a unitary transformation U that

makes a clone of a quantum system. Namely, suppose U acts, for

any state |φ⟩, as
U : |φ0⟩ → |φφ⟩.

Let |φ⟩ and |ϕ⟩ be two states that are linearly independent. Then

we should have U |φ0⟩ = |φφ⟩ and U |ϕ0⟩ = |ϕϕ⟩ by definition. Then

the action of U on |ψ⟩ = 1√
2
(|φ⟩+ |ϕ⟩) yields

U |ψ0⟩ = 1√
2
(U |φ0⟩+ U |ϕ0⟩) = 1√

2
(|φφ⟩+ |ϕϕ⟩).

If U were a cloning transformation, we must also have

U |ψ0⟩ = |ψψ⟩ = 1

2
(|φφ⟩+ |φϕ⟩+ |ϕφ⟩+ |ϕϕ⟩),

which contradicts the previous result. Therefore, there does not exist

a unitary cloning transformation. □

Remark There is proof using the fact that information cannot be

transmitted faster than light speed. See the supplementary note.
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Qubits

� Mathematically, qubit is a vector in |x⟩ = a|0⟩+ b|1⟩ =
(
a
b

)
∈

C2 with |a|2 + |b|2 realized by physical quantum states such as

the vertically and horizontally polarized photons, or spin 1/2

in NMR system.

� Note that measurement will give |0⟩ or |1⟩ even a qubit can

assume infinitely many states. The probability for the mea-

surement on |x⟩ yielding |0⟩ is ⟨x|(|0⟩⟨0|)|x⟩ = |a|2.

� Even if we can get the information |a| and |b| by measuring

many identical |x⟩ if it is available, we cannot get complete

information of |x⟩⟨x|.

� Using the measurable states P1 = |0⟩⟨0|, P2 = |1⟩⟨1| to get

information of ⟨x|P1x⟩, ⟨x|P2x⟩, we have the “diagonal entries”
of ρ = |x⟩⟨x|, which are |a|2, |b|2.

� In order to obtain complete information of |x⟩⟨x|, we may ap-

ply unitary U1, . . . , Ur and measure the diagonal Uj |x⟩⟨x|U †
j to

access information of the off-diagonal entries. Such study is

known as state tomography problem.

One may consider qutrits in C3 and qudits in Cn.
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Bloch sphere and Bloch ball

Since two unit vectors |x⟩ and eit|x⟩ represent the same quantum

state, it is convenient to use the rank one orthogonal projection ρ =

|x⟩⟨x|, which will be called a pure state, to represent the state.

More generally, one may consider the mixed state ρ ∈Mn of the

form
r∑

j=1

pr|xj⟩⟨xj |

with probability vector (p1, . . . , pr) and pure states |x1⟩⟨x1|, . . . , |xr⟩⟨xr|.

For qubits, a mixed state has the form

ρ =
1

2
(I2 + u · σ) = 1

2
(σ0 + u1σ1 + u2σ2 + u3σ3)

with |u| =
√
u21 + u22 + u23 ≤ 1.

Here (σ1, σ2, σ3) = (σx, σy, σz) are the Pauli matrices”

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σx =

(
1 0
0 −1

)
.

� The eigenvalues of ρ are 1
2(1± |u|).

� ρ is a pure state if and only if |u| = 1.

� In such a case, we may let

u = (u1, u2, u3) = (sin θ cosϕ, sin θ sinϕ, cos θ).
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Multi-qubit systems and entangled states

Given n qubits |x1⟩, . . . , |xn⟩, we can consider the tensor product

|x1⟩ ⊗ · · · ⊗ |xn⟩ ∈ CN with N = 2n. Most state vectors∑
ik=0,1

ai1···in |xi1⟩ ⊗ · · · ⊗ |xin⟩ ∈ CN

are entangled state vectors, which are not of the tensor form.

Notation We often assume |xj⟩ ∈ {|0⟩, |1⟩}, and regard

|x⟩ = |xi1 · · ·xin⟩ = |qn−1 · · · q0⟩

as a binary number, and

|ψ⟩ =
∑

ik=0,1

ai1···in |xi1 · · ·xin⟩.

Example

|x⟩ = 1

2

∑
i,j∈{0,1}

|ij⟩ = 1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩) = 1

2

3∑
x=0

|x⟩.
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In quantum computing, we often implement quantum operation of

the form: ∑
x

|x⟩|0⟩ 7→
∑
x

|x⟩|f(x)⟩.

For example, if f(0) = f(1) = 1, there is U such that

U |00⟩ = |01⟩, U |10⟩ = |11⟩.

There are many choices for U . For example, we may set U |01⟩ =

|00⟩, U |11⟩ = |10⟩.
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Some important entangled states

Example The Bell states

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩), |Φ−⟩ = 1√

2
(|00⟩ − |11⟩),

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩), |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩)

are entangled states and form an orthonormal basis for the two qubit

systems.

Example In the 3 qubit system, we have that GHZ state and W

state:

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) and |W ⟩ 1√

3
(|100⟩+ |010⟩+ |001⟩).
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Example One can do measurement of the first qubit for a state

vector in a n qubit system. For instance,

|x⟩ = a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩, |a|2 + |b|2 + |c|2 + |d|2 = 1.

We measure the first qubit with respect to the basis {|0⟩, |1⟩}. Set

|x⟩ = |0⟩(a|0⟩+ b|1⟩) + |1⟩(c|0⟩+ d|1⟩)

= u|0⟩((a/u)|0⟩+ (b/u)|1⟩) + v|1⟩((c/v)|0⟩+ (d/v)|1⟩),

where u =
√
|a|2 + |b|2 and v =

√
|c|2 + |d|2. We can measure the

first qubit, say, by setting A = (|0⟩⟨0| − |1⟩⟨1|)⊗ I2 so that

M0 = |0⟩⟨0| ⊗ I2, M1 = |1⟩⟨1| ⊗ I2.

Applying M0 and M1, we obtain 0 with probability ⟨x|M0|x⟩ = u2

and 1 with probability v2; the state |x⟩ collapses to

|0⟩ ⊗ ((a/u)|0⟩+ (b/u)|1⟩) and |1⟩ ⊗ ((c/v)|0⟩+ (d/v)|1⟩), r

espectively, upon measurement.
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Einstein-Podolsky-Rosen (EPR) Phenomenon

� Consider the EPR state

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩).

Alice gets the first particle and Bob gets the second one.

� When Alice measures, Bob’s particle will change instantaneously

to |1⟩ or |0⟩ depending on the measured outcome of Alice being

|0⟩ or |1⟩.

� For example, set up the apparatus for the observable

A = |0⟩⟨0| ⊗ I2 − |1⟩⟨1| ⊗ I2.

� If Alice sees the reading 1, then Bob’s qubit is to |1⟩; if Alice
sees the reading −1, then Bob’s qubit is |0⟩.

� Alice cannot control her measurement and hence the reading

of Bob! So, it does not violate the special theory of relativity.

(It is impossible that information travels faster than light!)

� However, they can measure their individual states around the

same time, and decide to make a move according to |01⟩ or |10⟩
occur.

� Bell proposed an experiment which confirmed that there cannot

be a hidden rule governing the measurement of the entangled

pair.
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Measurements

For each outcome m, construct a measurement operator Mm so

that the probability of obtaining outcome m in the state |x⟩ is com-

puted by

p(m) = ⟨x|M †
mMm|x⟩

and the state immediately after the measurement is

|m⟩ = Mm|x⟩√
p(m)

.

Example Let M = {M0,M1} with M0 = |0⟩⟨0| and M1 = |1⟩⟨1|.
Then for |x⟩ = a|0⟩+ b|1⟩ with a ̸= 0, p(0) = |a|2, M0|x⟩ = a|0⟩/|a|,
which is the same as the vector state |0⟩.

� In general, suppose an observable M is given with measure-

ment operatorsMm. Then setting Pi =M †
iMi, we require that∑

m Pm = In.

� If there are many copy of a state |x⟩, then the expected value

of M is

E(M) = ⟨M⟩ =
∑
m

mp(m) =
∑
m

m⟨x|Pm|x⟩ = ⟨x|M |x⟩.

Here M can be identified with
∑

mmPm.

� The standard derivation is

∆(M) =
√
⟨(M − ⟨M⟩)2 =

√
⟨M2⟩ − ⟨M⟩2.

� The variance (square of standard deviation) is

⟨(M − ⟨M⟩)2⟩ = ⟨x|M2|x⟩ − ⟨x|M |x⟩2.
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Another proof of no-cloning theorem

The no-cloning theorem may be proved by using the special the-

ory of relativity, which assumes no information can propagate faster

than the speed of light.

Suppose Alice and Bob share a Bell state

|Ψ−⟩ = 1√
2
(|0⟩|1⟩ − |1⟩|0⟩) = 1√

2
(|+ ⟩| − ⟩ − | − ⟩|+ ⟩).

where | ± ⟩ = 1√
2
(|0⟩ ± |1⟩). Readers are encouraged to verify the

second equality. Alice keeps the first qubit while Bob keeps the

second. If Alice wants to send Bob a bit “0”, she measures her

qubit in {|0⟩, |1⟩} basis while if she wants to send “1”, she employs

{| + ⟩, | − ⟩} basis for her measurement. Bob always measures his

qubit in {|0⟩, |1⟩} basis.

After Alice’s measurment and before Bob’s measurment, Bob’s

qubit is |0⟩ or |1⟩ if Alice sent “0” while it is | + ⟩ or | − ⟩ if Alice

sent “1”.

Suppose Bob is able to clone his qubit. He makes many copies

of his qubit and measures them in {|0⟩, |1⟩} basis. If Alice sent “0”,

Bob will obtain 0, 0, 0, . . . or 1, 1, 1, . . . while if she sent “1”, Bob

will obtain approximately 50% of 0’s and 50% of 1’s. Suppose Bob

received |±⟩ and madeN clones, then the probability of obtaining the

same outcome is 1/2N−1, which is negligible if N is sufficiently large.

Note that Bob obtains the bit Alice wanted to send immediately

after Alice’s measurement assuming it does not take long to clone

his qubit. This could happen even if Alice and Bob are separated

many light years apart, thus in contradiction with the special theory

of relativity. □
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