
Some important entangled states

Example The Bell states

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩), |Φ−⟩ = 1√

2
(|00⟩ − |11⟩),

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩), |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩)

are entangled states and form an orthonormal basis for the two qubit

systems.

Example In the 3 qubit system, we have that GHZ state and W

state:

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) and |W ⟩ 1√

3
(|100⟩+ |010⟩+ |001⟩).
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Example One can do measurement of the first qubit for a state

vector in a n qubit system. For instance,

|x⟩ = a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩, |a|2 + |b|2 + |c|2 + |d|2 = 1.

We measure the first qubit with respect to the basis {|0⟩, |1⟩}. Set

|x⟩ = |0⟩(a|0⟩+ b|1⟩) + |1⟩(c|0⟩+ d|1⟩)

= u|0⟩((a/u)|0⟩+ (b/u)|1⟩) + v|1⟩((c/v)|0⟩+ (d/v)|1⟩),

where u =
√
|a|2 + |b|2 and v =

√
|c|2 + |d|2. We can measure the

first qubit, say, by setting A = (|0⟩⟨0| − |1⟩⟨1|)⊗ I2 so that

M0 = |0⟩⟨0| ⊗ I2, M1 = |1⟩⟨1| ⊗ I2.

Applying M0 and M1, we obtain 0 with probability ⟨x|M0|x⟩ = u2

and 1 with probability v2; the state |x⟩ collapses to

|0⟩ ⊗ ((a/u)|0⟩+ (b/u)|1⟩) and |1⟩ ⊗ ((c/v)|0⟩+ (d/v)|1⟩), r

espectively, upon measurement.
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Einstein-Podolsky-Rosen (EPR) Phenomenon

� Consider the EPR state

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩).

Alice gets the first particle and Bob gets the second one.

� When Alice measures, Bob’s particle will change instantaneously

to |1⟩ or |0⟩ depending on the measured outcome of Alice being

|0⟩ or |1⟩.

� For example, set up the apparatus for the observable

A = |0⟩⟨0| ⊗ I2 − |1⟩⟨1| ⊗ I2.

� If Alice sees the reading 1, then Bob’s qubit is to |1⟩; if Alice
sees the reading −1, then Bob’s qubit is |0⟩.

� Alice cannot control her measurement and hence the reading

of Bob! So, it does not violate the special theory of relativity.

(It is impossible that information travels faster than light!)

� However, they can measure their individual states around the

same time, and decide to make a move according to |01⟩ or |10⟩
occur.

� Bell proposed an experiment which confirmed that there cannot

be a hidden rule governing the measurement of the entangled

pair.
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Bell inequality

About 30 years after the EPR paper was published, an experi-

ment test was proposed to check whether the measurement of entan-

gled pairs follow a certain predetermined rule imposed by Nature, or

the postulate of quantum mechanics.

Here is the proposed experiments. Suppose Charlie prepares an

entangled pair of qubits (photons or particles) and sends the first one

to Alice and the second one to Bob. Alice will apply one of her two

measurement schemes, say, Q and R, each will produce a measured

value in {1,−1}. Bob will also apply one of his two measurement

schemes, say, S and T , each will produce a measured value in {1,−1}.
Let us consider

QS +RS +RT −QT = (Q+R)S + (R−Q)T.

Because R,Q ∈ {1,−1}, it follows that either (Q + R)S = 0 or

(R−Q)T = 0. As a result, QS +RS +RT −QT ∈ {2,−2}.
Suppose there is a hidden rule governing the measurement out-

comes, and p(q, r, s, t) is the probability that, before the measure-

ments are performed, the system is in the state (Q,R, S, T ) = (q, r, s, t).

Then the expectation value E(QS + RS + RT − QT ) = E(QS) +

E(RS) + E(RT )− E(QT ) satisfies

|E(QS +RS +RT −QT )| =
∑

(q,r,s,t)

p(q, r, s, t)|qs+ rs+ rt− qt|

≤
∑

(q,r,s,t)

p(q, r, s, t) · 2 = 2.

So, we get the Bell inequality

|E(QS) + E(RS) + E(RT )− E(QT )| ≤ 2. (0.1)

Suppose Charlie prepares an entangled state

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩)

and gives Alice the first qubit, and Bob the second one. Alice uses

the measurement operators Q = σz and R = σx, and Bob uses the

measurement operators S = −1√
2
(σz+σx) and T = 1√

2
(σz−σx). Then

E(QS) = ⟨Ψ−|Q⊗S|Ψ−⟩ = 1√
2
, E(RS) = ⟨Ψ−|R⊗S|Ψ−⟩ = 1√

2
,

E(RT ) = ⟨Ψ−|R⊗T |Ψ−⟩ = 1√
2
, E(QT ) = ⟨Ψ−|Q⊗T |Ψ−⟩ = −1√

2
,
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and hence

E(QS +RS +RT −QT ) = 4/
√
2 = 2

√
2. (0.2)

This equality clearly violates the Bell inequality.

To determine whether (0.1) or (0.2) is valid, Alice and Bob can es-

timate E(QS) by performing measurements on many copies of |Ψ−⟩,
and record their results. After the experiments, they can multiply

their measurements when they used the measurement schemes Q and

S, respectively. Similarly, they can estimate E(RS), E(RT ), E(QT ),

so as to obtain an estimate of E(QS +RS +RT −QT ).

Experimental results showed strong support to (0.2). Hence, the

EPR proposal that there is a hidden rule governing the measurement

results of entangled pair was ruled out.
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Measurements

For each outcome m, construct a measurement operator Mm so

that the probability of obtaining outcome m in the state |x⟩ is com-

puted by

p(m) = ⟨x|M †
mMm|x⟩

and the state immediately after the measurement is

|m⟩ = Mm|x⟩√
p(m)

.

Example Let M = {M0,M1} with M0 = |0⟩⟨0| and M1 = |1⟩⟨1|.
Then for |x⟩ = a|0⟩+ b|1⟩ with a ̸= 0, p(0) = |a|2, M0|x⟩ = a|0⟩/|a|,
which is the same as the vector state |0⟩.

� In general, suppose an observable M is given with measure-

ment operatorsMm. Then setting Pi =M †
iMi, we require that∑

m Pm = In.

� If there are many copy of a state |x⟩, then the expected value

of M is

E(M) = ⟨M⟩ =
∑
m

mp(m) =
∑
m

m⟨x|Pm|x⟩ = ⟨x|M |x⟩.

Here M can be identified with
∑

mmPm.

� The standard derivation is

∆(M) =
√
⟨(M − ⟨M⟩)2 =

√
⟨M2⟩ − ⟨M⟩2.

� The variance (square of standard deviation) is

⟨(M − ⟨M⟩)2⟩ = ⟨x|M2|x⟩ − ⟨x|M |x⟩2.
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Another proof of no-cloning theorem

The no-cloning theorem may be proved by using the special the-

ory of relativity, which assumes no information can propagate faster

than the speed of light.

Suppose Alice and Bob share a Bell state

|Ψ−⟩ = 1√
2
(|0⟩|1⟩ − |1⟩|0⟩) = 1√

2
(|+ ⟩| − ⟩ − | − ⟩|+ ⟩).

where | ± ⟩ = 1√
2
(|0⟩ ± |1⟩). Readers are encouraged to verify the

second equality. Alice keeps the first qubit while Bob keeps the

second. If Alice wants to send Bob a bit “0”, she measures her

qubit in {|0⟩, |1⟩} basis while if she wants to send “1”, she employs

{| + ⟩, | − ⟩} basis for her measurement. Bob always measures his

qubit in {|0⟩, |1⟩} basis.

After Alice’s measurment and before Bob’s measurment, Bob’s

qubit is |0⟩ or |1⟩ if Alice sent “0” while it is | + ⟩ or | − ⟩ if Alice

sent “1”.

Suppose Bob is able to clone his qubit. He makes many copies

of his qubit and measures them in {|0⟩, |1⟩} basis. If Alice sent “0”,

Bob will obtain 0, 0, 0, . . . or 1, 1, 1, . . . while if she sent “1”, Bob

will obtain approximately 50% of 0’s and 50% of 1’s. Suppose Bob

received |±⟩ and madeN clones, then the probability of obtaining the

same outcome is 1/2N−1, which is negligible if N is sufficiently large.

Note that Bob obtains the bit Alice wanted to send immediately

after Alice’s measurement assuming it does not take long to clone

his qubit. This could happen even if Alice and Bob are separated

many light years apart, thus in contradiction with the special theory

of relativity. □
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Mixed States and Density Matrices

� A system is in a mixed state if there is a (classical) probability

pi that the system is in state |xi⟩ for i = 1, . . . , N .

� If there is only one possible state, i.e., p1 = 1, then the system

is in pure state.

� The expectation value (mean) of the measurement of the sys-

tem corresponding to the observable described by the Hermi-

tian matrix A is

⟨A⟩ =
N∑
j=1

pj⟨xj |A|xj⟩ = tr (Aρ),

where

ρ =

N∑
j=1

pj |xj⟩⟨xj |

is a density operator (matrix).

Example 1
2(|e1⟩⟨e1|+ |e2⟩⟨e2|) = 1

2I2 is a maximally mixed state.

It is the mixed state of 1
2(|e1⟩⟨e1|+ |e2⟩⟨e2|) with

|e1⟩ = (cos θ, sin θ)t and |e2⟩ = (sin θ,− cos θ)t, θ ∈ [0, 2π).
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Definition A (Hermitian) matrix A ∈Mn is positive semidefinite if

⟨x|A|x⟩ ≥ 0 for all |x⟩ ∈ Cn.

Proposition Let A ∈Mn.

(a) The matrix A ∈ Mn is positive semidefinite if and only if it

has nonnegative eigenvalues.

(b) The matrix A is a density matrix if and only if it is positive

semi-definite with trace 1.

Proof. (a) Let A = UDU †. If A has a negative eigenvalues λ

with unit eigenector |λ⟩, then ⟨λ|A|λ⟩ = λ < 0.

If A has nonnegative eigenvalues, then for any |x⟩ ∈ Cn we can

let |y⟩ = U †|x⟩ so that ⟨x|A|x⟩ = ⟨y|D|y⟩ =
∑n

j=1 λj |y2| ≥ 0.

(b) If A =
∑r

j=1 pr|vj⟩⟨vj | is a density matrix, then

⟨x|A|x⟩ =
r∑

j=1

pr|⟨x|vj⟩|2 ≥ 0,

and tr (A) =
∑r

j=1 pjtr |vj⟩⟨vj | =
∑r

j=1 pj = 1.

If A is positive semidefinite with trace 1, then

A =
∑n

j=1 λj |λj⟩⟨λj | with
∑n

j=1 λj = 1. □
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Postulates of a quantum system in mixed states.

A1’ A physical state is specified by a density matrix ρ : H → H,

which is positive semidefinite with trace equal to one.

A2’ The mean value of an observable associate with the Hermitian

matrix A is ⟨A⟩ = tr (ρA).

After a measurement, the mixed state ρ will collapses to one of

the eigenstate ρj with a probability of pj = tr (ρρj). Note that∑
j pj = 1.

A3’ The temporal evolution of the density matrix is given by the

Liouville-von Neumann equation

ih̄
d

dt
ρ = [H, ρ] = Hρ− ρH,

where H is the system Hamiltonian.
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Theorem A state ρ ∈ Dn is pure if and only if any one of the

following condition holds.

(a) ρ2 = ρ. (b) tr ρ2 = 1.

Proof. Suppose ρ = |ψ⟩⟨ψ| is a pure state.

Then ρ2 = (|ψ⟩⟨ψ|)(|ψ⟩⟨ψ|) = |ψ⟩⟨ψ| = ρ.

Thus, the condition (a) holds.

If (a) holds, then tr ρ2 = tr ρ = 1. Thus, the condition (b) holds.

If (b) holds, and ρ =
∑n

j=1 λj |λj⟩⟨λj |,

where λ1 ≥ · · · ≥ λn ≥ 0 and
∑n

j=1 λj = 1.

Then ρ2 =
∑n

j=1 λ
2
j |λj⟩⟨λj | has eigenvalues λ21, . . . , λ2n.

So, if tr ρ2 = 1 = tr ρ, then

0 =

n∑
j=1

(λj − λ2j ) =

n∑
j=1

λj(1− λj)

so that all the nonnegative numbers λj(1− λj) is zero.

Thus, λj ∈ {0, 1}. Since
∑n

j=1 λj = 1, we see that

λ1 = 1 and λj = 0 for j > 1.

Thus, ρ = |λ1⟩⟨λ1| is a pure state. □
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Definition 2.1 Suppose H = H1 ⊗H2. A state ρ is uncorrelated

if ρ = ρ1 ⊗ ρ2; it is separable if it is a convex combination of

uncorrelated states, i.e.,

ρ =

r∑
j=1

pjρ1,j ⊗ ρ2,j .

Otherwise, it is inseparable (or entangled).

Remark Every A ∈ H is a linear combination of product states

with linear coefficient summing up to 1. But some of the coefficients

may be negative.

Reason Suppose the basis B1 ⊆Mn contains the pure states:

|e1,j⟩⟨e1,j |, 1 ≤ j ≤ m}, 1 ≤ j ≤ m,

and {|x⟩⟨x| with

|x⟩ = 1√
2
(|e1,j + |e1,k)⟩,

1√
2
(|e1,j + i|e1,k)⟩, 1 ≤ j < k ≤ m.

Then B1 is a basis for Mm. Similarly, there is a basis for Mn con-

sisting of pure states. As a result, B = {ρ1 ⊗ ρ2 : ρj ∈ Bj , j = 1, 2}}
is a basis for Mm ⊗Mn =Mmn.
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Remarks

The set of tensor states and separable states are small.

Separable states are closely related to product states.

Inseparable states are the resource for quantum computing.

Proposition Let ρ ∈ Dmn.

(a) Suppose ρ has rank one. Then ρ is separable if only only if

ρ = ρ1 ⊗ ρ2 for rank one matrices ρ1 ∈ Dm, ρ2 ∈ Dn.

(b) If ρ ∈ Dmn is separable, then ρ is a convex combination of

quantum states of the form ρ1 ∈ Dm, ρ2 ∈ Dn, where ρ1, ρ2 are pure

states.
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Partial transpose - a tool to determine inseparable sates

The partial transpose with respect to H2 is defined by

ρpt = ρ1 ⊗ ρt2.

Extend the map by linearity so that ρpt =
∑

j=1 cjρ1,j ⊗ ρt2,j if

ρ =
∑k

j=1 cjρ1,j ⊗ ρ2,j .

In matrix form, if ρ = (Pij) ∈Mm(Mn), then ρ
pt = (P t

ij).

Remark If ρ is separable, then so is ρpt.

If ρpt has negative eigenvalues, then ρ is not separable.
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Define the negativity of ρ ∈ H1 ⊗H2 by

N(ρ) = (
∑
j

|λi(ρpt)| − 1)/2 ≥ 0,

Then ρpt has nonnegative eigenvalues if and only if N(ρ) = 0.

Theorem If ρ ∈ H1⊗H2 is separable, then N(ρ) = 0. The converse

holds if dimH1 + dimH2 ≤ 5.

Open problem Find a simple proof!

Example Let


1−p
4 0 0 0

0 1+p
4

−p
2 0

0 −p
2

1+p
4 0

0 0 0 1−p
4

.
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Theorem Let ρ ∈ Mm ⊗Mn. Then ρ is inseparable if and only if

there is an entanglement witness F such that

tr (Fρ) > 0 ≥ tr (F (σ1 ⊗ σ2)) for all σ1 ∈ Dm, σ2 ∈ Dn.

It should be remarked that finding an entanglement witness of an

inseparable state or showing the nonexistence could be a challenging

problem.
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Partial traces and Purification

Partial trace

Let C = A⊗B = (AijB) ∈Mm ⊗Mn.

(1) One can take the partial trace of the first system to get the

matrix B in the second system by simply summing the diagonal

blocks of C resulting in A11B + · · ·+AmmB = (trA)B = B.

(2) One can take the partial trace of the second system to get the

matrix A in the first system by simply taking the trace of all

the blocks of C resulting in (Aijtr (B)) = (Aij) = A.

For a general state ρ = (Trs)1≤r,s≤m with Trs ∈ Mn for all r, s, the

first partial trace and second partial traces are

tr 1(ρ) = T11 + · · ·+ Tmm ∈Mn and tr 2(ρ) = (trTij) ∈Mm.

Let A ∈ H1 ⊗H2. The partial trace of A over H2 is an operator

acting on H1 defined by

A1 = tr 2A =
n∑

k=1

(Im ⊗ ⟨e2,k|)A(Im ⊗ |e2,k⟩),

where m,n are the dimension of H1 and H2.

In matrix form, if ρ = (Pij) ∈Mm(Mn), then tr 2(ρ) = (trPij) ∈
Mn. One can define tr 1(ρij) = ρ11 + · · · + ρmm, which corresponds

to

A2 = tr 1A =
m∑
k=1

(⟨e1,k| ⊗ In)A(|e1,k⟩ ⊗ In).
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Purification

Theorem Let ρ1 =
∑r

j=1 pj |xj⟩⟨xj |. If |ψ⟩ =
∑r

j=1

√
p
j
|xj⟩ ⊗ |yj⟩,

for an orthonromal set {|y1⟩, . . . , |yr⟩} ⊆ Cr, then

tr 2(|ψ⟩⟨ψ|) = ρ1.

Example Let ρ = 1
4

(
2 1
1 2

)
= 3

4P1 +
1
4P2.

Let {|y1⟩, |y2⟩} = {|e1⟩, |e2⟩}.

Then |ψ⟩ = 1
2
√
2


√
3
0√
3
0

+ 1
2
√
2


0
1
0
−1

 and

|ψ⟩⟨ψ| = 1
8


3

√
3 3 −

√
3√

3 1
√
3 −1

3
√
3 3 −

√
3

−
√
3 −1 −

√
3 1

.
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Quantum operations on an open system

Quantum operations on a closed system with quantum state ρ

has the form

ρ 7→ UρU †,

for some unitary U .

A quantum system ρ always interact with other quantum systems

(from the environment or by the introduction of an auxiliary system

for quantum computing). We assume that σ is the quantum state

for the environment or auxiliary system, and the initial state of the

open system is σ ⊗ ρ.

Then a general quantum operation will be obtained by taking a

suitable partial trace of U(σ ⊗ ρ)U †.

Theorem For every quantum operation on an open system Φ :

Mn → Mm there exist r ∈ N and F1, . . . , Fr ∈ Mm,n such that∑r
j=1 F

†
j Fj = In and

Φ(A) =

r∑
j=1

FjAF
†
j for all A ∈Mn.

This is called the operator sum representation of the quantum oper-

ation. The matrices F1, . . . , Fr are called the Kraus operators of the

operations.

Example Let U1, . . . , Ur ∈ U(n) and p1, . . . , pr be positive numbers

summing up to 1. Then Φ :Mn →Mn defined by

Φ(A) =
r∑

j=1

pjUjAU
†
j for all A ∈Mn

is a quantum channel known as the random unitary channel or

mixed unitary channel.

19



Quantum channels and Measurements

When a quantum state ρ is transmitted through a quantum chan-

nel, it will interact with the external environment. So, we may re-

gard the transmission as a process of letting the quantum state going

through a quantum operation of an open system, and assume the re-

ceived state has the form

ρ̂ =

r∑
j=1

FjρF
†
j .

Here F1, . . . , Fr are the Kraus operators caused by the influence of

the environment on ρ. In this context, F1, . . . , Fr are known a the

error operators.

Positive Operator-Valued Measure (POVM)

� Eigenprojections of A.

� Projective measurement.

� POVM.
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Fidelity

Definition 2.2 The fidelity of two density matrices ρ1 and ρ2 is

defined as

F (ρ1, ρ2) = tr
√√

ρ1ρ2
√
ρ1.

Note that
√
ρ1ρ2

√
ρ1 is positive semidefinite so that

√√
ρ1ρ2

√
ρ1 is

well defined and F (ρ1, ρ2) = tr
√√

ρ1ρ2
√
ρ1 ≥ 0.

Example ρ1 = diag (1/3, 2/3), ρ2 =
1
2

(
1 1
1 1

)
. Then

Remarks

1. If A =
∑

j λjPj with λj ≥ 0, then A1/2 =
∑

j

√
λjPj .

2. Let R =
√
ρ1
√
ρ2 with singular values r1, . . . , rn. Then RR

† =
√
ρ1ρ2

√
ρ1 has eigenvalues r21, . . . , r

2
n and

F (ρ1, ρ2) = tr (
√
RR∗) = r1 + · · ·+ rn.

3. Note also that R†R also has the same eigenvalues r21 ≥ · · · ≥ r2n.

So,

F (ρ2, ρ1) = tr (R∗R) = tr
√√

ρ2ρ1
√
ρ2 = r1+· · ·+rn = F (ρ1, ρ2).

4. For any unitary U , F (Uρ1U
†, Uρ2U

†) = F (ρ1, ρ2). (Exercise

2.10).

5. Suppose ρ1, ρ2 have eigenvalues a1 ≥ · · · ≥ an and b1 ≥ · · · ≥
bn. Then

F (ρ1, ρ2) = max{|tr (ρ1/21 ρ
1/2
2 U)| : U unitary} ≤

n∑
j=1

√
ajbj ≤ 1.

6. For any two density matrices ρ1 and ρ2, we have

0 ≤ F (ρ1, ρ2) ≤ 1.

The first equality holds if and only if ρ1ρ2 = 0; the second

equality holds if and only if ρ1 = ρ2.

Open problems

1. Let A ∈ Dm, B ∈ Dn. Determine S(A,B) = {C ∈ Dmn :

tr 1(C) = B, tr 2(C) = A}.
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2. Determine C ∈ S(A,B) with maximum rank and minimum

rank.

3. Determine C ∈ S(A,B) with maximum S(C) = tr (−C lnC),

von Neumann entropy.

4. More generally, one may consider tripartite system with states

inDn1n2n3 and determine S(T1, T2) = {C ∈ Dn1n2n3 : tr 1(C) =

T1, tr 2(C) = T2}, where T1 ∈ Dn2n3 and T2 ∈ Dn1n3 are two

given states.
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