Theorem For every quantum operation on an open system Φ : $M_n \rightarrow M_m$ there exist $r \in \mathbb{N}$ and $F_1, \ldots, F_r \in M_{m,n}$ such that $\sum_{j=1}^{r} F_j^{\dagger} F_j = I_n$ and MXN for all $A \in M_n$.

$$\mathbb{P}^{n}M_{n} \rightarrow M_{n}$$

tive

This is called the operator sum representation of the quantum operation. The matrices F_1, \ldots, F_r are called the Kraus operators of the operations.

በኦጦ

Proof. Suppose $\Phi: M_n \to M_m$ is an quantum operation. We may assume that $\Phi(\rho)$ is the partial trace of

 $F_i A F_i^{\dagger}$

 $\Phi(A) = \sum_{i=1}^{n}$

$$U(\sigma \otimes \rho)U^{\dagger} \in M_{nk}$$
 with $nk = mr$.

Here U may depends on t. By purification, we may assume that $\sigma = E_{11}$ so that

$$U(\sigma \otimes \rho)U^{\dagger} = U\begin{pmatrix} \rho & 0\\ 0 & 0 \end{pmatrix}U^{\dagger} = \begin{pmatrix} F_1\\ \vdots\\ F_r \end{pmatrix}\rho(F_1^*|\cdots|F_r^*)$$

with diagonal blocks $F_1 \rho F_1^{\dagger}, \ldots, F_r \rho F_r^{\dagger}$ so that

$$\operatorname{tr}_1(U(\sigma\otimes\rho)U^{\dagger}=\sum_{j=1}^r F_j\rho F_j^{\dagger}.$$

Here $(F_1^{\dagger}, \ldots, F_r^{\dagger})$ are the first *n* rows of U^{\dagger} .

Remark quantum channels are trace preserving completely positive linear maps.

P(9) = 0

80

P

ß

linear maps. **Example** Let $U_1, \ldots, U_r \in U(n)$ and p_1, \ldots, p_r be positive numbers summing up to 1. Then $\Phi: M_n \to M_n$ defined by

$$\Phi(A) = \sum_{j=1}^{r} p_j U_j A U_j^{\dagger} \quad \text{for all } A \in M_n$$

is a quantum channel known as the random unitary channel or mixed unitary channel.

\$61,= N2m N2m

Quantum channels and Measurements

When a quantum state ρ is transmitted through a quantum channel, it will interact with the external environment. So, we may regard the transmission as a process of letting the quantum state going through a quantum operation of an open system, and assume the received state has the form

$$\hat{\rho} = \sum_{j=1}^{r} F_j \rho F_j^{\dagger}$$

Here F_1, \ldots, F_r are the Kraus operators caused by the influence of the environment on ρ . In this context, F_1, \ldots, F_r are known a the **error operators**.

Positive Operator-Valued Measure (POVM)

• Eigenprojections of A.

Quantum measurements can be viewed as quantum operations on open systems. As mentioned before a Hermitian matrix $A = \sum_{j=1}^{n} \lambda_j |\lambda_j\rangle \langle \lambda_j|$ is associated with an observable. If a state $\rho \in D_n$ goes through the measurement process corresponding to A, the state ρ will "collapse" to one of the pure states $|\lambda_j\rangle \langle \lambda_j|$ with a probability tr $(A\rho)$.

• Projective measurement.

In general, if $A = \sum_{j=1}^{s} \lambda_j P_j$, where P_j is the projection operator corresponding to the eigenvalue λ_j for the distinct eigenvalues $\lambda_1, \ldots, \lambda_s$ of A. In such a case, the **projective measurement** of ρ under the measurement associated with A is the quantum operation

where $p_j = \operatorname{tr}(P_j \rho P_j) = \operatorname{tr}(\rho P_j)$ and the set $\{P_1, \ldots, P_r\}$ satisfies the completeness relation $\sum_j P_j P_j^{\dagger} = \sum_j P_j = I$.

• POVM. for any positive semidefinite matrices $Q_1, \ldots, Q_r \in M_n$ such that $Q_1 + \cdots + Q_r = I_n$, there are $M_1, \ldots, M_r \in M_n$ such that $M_j^{\dagger}M_j = Q_j$. The measurement operators are then associated with the quantum operation

$$\rho \mapsto \sum_{j=1}^r M_j \rho M_j^{\dagger}$$

so that ρ will change to the quantum state $\frac{1}{p_j}M_j\rho M_j^{\dagger}$ with a probability $p_j = \operatorname{tr}(M_j\rho M_j^{\dagger}) = \operatorname{tr}(\rho Q_j)$. The set $\{Q_1, \ldots, Q_r\} = \{M_1^{\dagger}M_1, \ldots, M_r^{\dagger}M_r\}$ is known as the **positive operator-valued** measure (**POVM**).

Example Suppose Bob will be given a quantum state chosen from the linearly independent set of unit vectors $\{|\psi_1\rangle, \ldots, |\psi_m\rangle\}$, which may not be orthonormal. He can construct the following POVM $\{Q_1, \ldots, Q_{m+1}\}$ such that he will know for sure that $|\psi_j\rangle$ is sent to him if the measurement of the received state yields Q_j if $Q_j = |\phi_j\rangle\langle\phi_j|/m$, where $\langle\phi_j|\phi_j\rangle = 1$ and $\langle\phi_j|\psi_i\rangle = 0$ for all $i \neq j$ for $j = 1, \ldots, m$ and $Q_{m+1} = I - \sum_{j=1}^m Q_j$. Evidently, a measurement of $|\psi_j\rangle\langle\psi_j|$ will yield Q_j or Q_{m+1} .

9

Fidelity

Definition Let $\rho_1, \rho_2 \in D_n$. Then the fidelity is defined by

$$F(\rho_1, \rho_2) = \left\{ \operatorname{tr} \left(\sqrt{\sqrt{\rho_1 \rho_2} \rho_1} \right) \right\}^2.$$

Here, $\sqrt{\rho_1}$ is the positive semi-definite square root of ρ_1 , and $\sqrt{\rho_1}\rho_2\sqrt{\rho_1}$ is positive semi-definite so that we can take its positive semi-definite square root.

Theorem Let
$$\rho_1, \rho_2 \in \mathcal{S}(\mathcal{H})$$
. If $\rho_1^{1/2} \rho_2^{1/2}$ has singular values $s_1 \geq \dots \geq s_n$, then

$$F(\rho_1, \rho_2) = F(\rho_2, \rho_1) = \left[\sum_{j=1}^n s_j\right]^2,$$

and the following conditions hold.

- (1) For any unitary U, $F(U\rho_1 U^{\dagger}, U\rho_2 U^{\dagger}) = F(\rho_1, \rho_2)$.
- (2) If ρ_1 or ρ_2 is a pure state, then $F(\rho_1, \rho_2) = \operatorname{tr}(\rho_1 \rho_2)$.
- (3) We have

$$F(\rho_1, \rho_2) \in [0, 1].$$

The equality $F(\rho_1, \rho_2) = 1$ holds if and only if $\rho_1 = \rho_2$. The equality $F(\rho_1, \rho_2) = 0$ holds if and only if $\operatorname{tr}(\rho_1 \rho_2) = 0$, equivalently, $\sigma_1^{\prime} \sigma_2^{s} = 0$ for any positive numbers r, s.

 $\langle S, S_2 \rangle$ = + (P, F2)) 1 2 2 0

 $\Sigma \lambda_{1} \lambda_{2} > < \times$

Other numerical functions on a mixed states

- tr is the sum of the singular values • The trace distance: of $\rho - \sigma$. 0-
- The relative entropy of two quantum states $\rho, \sigma \in D_n$ defined by S

$$\rho \| \sigma \rangle = -\operatorname{tr} \rho \ln \sigma + \operatorname{tr} \rho \ln \rho = \operatorname{tr} \rho (\rho - \sigma)$$

is another measure of the difference between the two quantum states. If there is $|v\rangle \in \mathbb{C}^n$ such that $\sigma |v\rangle = 0$ and $\langle v|\rho|v\rangle \neq 0$, then $S(\rho \| \sigma) = \infty$.

• The von Neumann entropy of a density matrix is defined as

where ln is the natural log function.

$$U = U = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Quantum Key distribution

Information are encrypted as 0 - 1 sequences. Alice and Bob use a private key K, a (long) 0-1 sequence to encrypt their accsages so that M is encrypted as $\tilde{M} = M + K$ and decrypted by $\tilde{M} + K$. **Problem** How to exchanged the private key securely. Quantum properties offer solutions. We will be a secure of the private key secure of the priva **BB84** (Bennett and Brassard, 1984)

• Each of Alice and Bob use two bases for photon states: $B_1 = \{|e_0\rangle, |e_1\rangle\}, B_2 = \{|f_0\rangle, |f_1\rangle\}.$

• Alice sends Bob 4M photons, each prepared in one of the two Dases randomly.

- Bob measures the received photons, each with one of the two bases randomly.
- Then they exchange notes and identify the photons that were sent and measured using the same bases. There should be roughly 2N such photons.
- They will use N of them to detect whether there is an eavesdropper, Eve, tampering their information.
- If Eve does intercept, the best things for her to do is to use B_1 and B_2 bases to measured the intercepted qubit, and then sends the measured qubit to Bob, using the same basis she obtains the measured result.
- Now, consider two cases. If Alice and Bob both used B_1 , they should get a perfect match of information. However, if Eve has applied B_1 or B_2 , about 1/2 of the times she would use B_2 , and sent out the bit so that 1/2 of the times that Bob will get the measured results agree with the photon sent by Alice.
- The same holds if both Alice and Bob used B2. So, roughly 1/4 of the N-bits would disagree. Alice and Bob would deduce that someone has intercept the information if there is a huge discrepancy in the N-bits comparison, and should retry the process.

B92 Protocol

• Affice sends 8N photons to Bob using $|e_0\rangle$ for 0 and $|f_0\rangle$ for 1.

13

• Bob measures the received photons using B_1 or B_2 and omly.

K

- Suppose Alice sends $|e_0\rangle$. If Bob uses B_1 , he will obtain $|e_0\rangle$; if Bob uses B_2 , he will obtain $|f_0\rangle$ or $|f_1\rangle$. If he gets $|f_1\rangle$, he knows that Alice has sent $|e_0\rangle$.
- Suppose Alice send $|f_0\rangle$. If Bob uses B_2 , he will obtain $|f_0\rangle$; if he uses B_1 , he will obtain $|e_0\rangle$ or $|e_1\rangle$. If he gets $|e_1\rangle$, he knows that Alice has sent $f_0\rangle$.
- There are roughly 2N photons that Bob will know with certainty.
- He will use N of them to check the presence of Eve.
- If Eve indeed present, 1/16 of the bits will fails to match.

There are **E91** and **BBM92** protocols using entangled pairs and Bell-Inequalities to check the presence of Eve.