Theorem For every quantum operation on an open system Φ : $M_{n} \rightarrow M_{m}$ there exist $r \in \mathbb{N}$ and $F_{1}, \ldots, F_{r} \in M_{m, n}$ such that $\sum_{j=1}^{r} F_{j}^{\dagger} F_{j}=I_{n}$ and

$m \times n$

 $\Phi(A)=\sum_{j=1}^{r} F_{j} A F_{j}^{\dagger}$ for all $A \in M_{n}$.This is called the operator sum representation of the quantum openation. The matrices F_{1}, \ldots, F_{r} are called the Kraus operators of the operations.

Proof. Suppose $\Phi: M_{n} \rightarrow M_{m}$ is an quantum operation.
We may assume that $\Phi(\rho)$ is the partial trace of

$$
U(\sigma \otimes \rho) U^{\dagger} \in M_{n k} \quad \text { with } n k=m r \text {. }
$$

Here U may depends on t. By purification, we may assume that
$\Phi(x)=$
 $\sigma=E_{11}$ so that

$$
U(\sigma \otimes \rho) U^{\dagger}=U\left(\begin{array}{cc}
\rho & 0 \\
0 & 0
\end{array}\right) U^{\dagger}=\left(\begin{array}{c}
F_{1} \\
\vdots \\
F_{r}
\end{array}\right) \rho\left(F_{1}^{*}|\cdots| F_{r}^{*}\right)
$$

with diagonal blocks $F_{1} \rho F_{1}^{\dagger}, \ldots, F_{r} \rho F_{r}^{\dagger}$ so that

$$
\operatorname{tr}_{1}\left(U(\sigma \otimes \rho) U^{\dagger}=\sum_{j=1}^{r} F_{j} \rho F_{j}^{\dagger}\right.
$$

Here $\left(F_{1}^{\dagger}, \ldots, F_{r}^{\dagger}\right)$ are the first n rows of U^{\dagger}.
Tuns, $\sum_{j=1}^{n} F_{j}^{\dagger} F_{j}=I_{n}$
 linear maps.
Example Let $U_{1}, \ldots, U_{r} \in \mathrm{U}(n)$ and p_{1}, \ldots, p_{r} be positive numbers summing up to 1 . Then $\Phi: M_{n} \rightarrow M_{n}$ defined by

$\Phi\left(\overline{L_{2}}=\mathrm{M}_{21} \rightarrow M 2 \mathrm{M}\right.$

Quantum channels and Measurements

When a quantum state ρ is transmitted through a quantum channel, it will interact with the external environment. So, we may regard the transmission as a process of letting the quantum state going through a quantum operation of an open system, and assume the received state has the form

$$
\hat{\rho}=\sum_{j=1}^{r} F_{j} \rho F_{j}^{\dagger} .
$$

Here F_{1}, \ldots, F_{r} are the Kraus operators caused by the influence of the environment on ρ. In this context, F_{1}, \ldots, F_{r} are known a the error operators.

Positive Operator-Valued Measure (POVM)

- Eigenprojections of A.

Quantum measurements can be viewed as quantum operations on open systems. As mentioned before a Hermitian matrix $A=\sum_{j=1}^{n} \lambda_{j}\left|\lambda_{j}\right\rangle\left\langle\lambda_{j}\right|$ is associated with an observable. If a state $\rho \in D_{n}$ goes through the measurement process corresponding to A, the state ρ will "collapse" to one of the pure states $\left|\lambda_{j}\right\rangle\left\langle\lambda_{j}\right|$ with a probability $\operatorname{tr}(A \rho)$.

- Projective measurement.

In general, if $A=\sum_{j=1}^{s} \lambda_{j} P_{j}$, where P_{j} is the projection operator corresponding to the eigenvalue λ_{j} for the distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{s}$ of A. In such a case, the projective measurement of ρ under the measurement associated with A is the quantum operation

$$
\operatorname{\rho }_{\rho \mapsto \sum_{j} P_{j} \rho P_{j},} \bar{F}_{j}^{+}=\bar{F}_{j}
$$

where $p_{j}=\operatorname{tr}\left(P_{j} \rho P_{j}\right)=\operatorname{tr}\left(\rho P_{j}\right)$ and the set $\left\{P_{1}, \ldots, P_{r}\right\}$ satisfies the completeness relation $\sum_{j} P_{j} P_{j}^{\dagger}=\sum_{j} P_{j}=I$.

- POVM. for any positive semidefinite matric $\left\{Q_{1}, \ldots, Q_{r}\right) \in M_{n}$ such thag $Q_{1}+\cdots+Q_{r}=I_{n}$, there are $M_{1}, \ldots, M_{r} \in M_{n}$ such that $M_{j}^{\top} M_{j}=Q_{j}$. The measurement operators are then associated with the quantum operation

$$
\rho \mapsto \sum_{j=1}^{r} M_{j} \rho M_{j}^{\dagger}
$$

so that ρ will change to the quantum state $\frac{1}{p_{j}} M_{j} \rho M_{j}^{\dagger}$ with a probability $p_{j}=\operatorname{tr}\left(M_{j} \rho M_{j}^{\dagger}\right)=\operatorname{tr}\left(\rho Q_{j}\right)$. The set $\left\{Q_{1}, \ldots, Q_{r}\right\}=$ $\left\{M_{1}^{\dagger} M_{1}, \ldots, M_{r}^{\dagger} M_{r}\right\}$ is known as the positive operator-valued measure (POVM).

Example Suppose Bob will be given a quantum state chosen from the linearly independent set of unit vectors $\left\{\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{m}\right\rangle\right\}$, which may not be orthonormal. He can construct the following POVM $\left\{Q_{1}, \ldots, Q_{m+1}\right\}$ such that he will know for sure that $\mid \psi_{j}$ is sent to him if the measurement of the received state yields Q_{j} if $Q_{j}=\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| / \mathrm{m}$, where $\left\langle\phi_{j} \mid \phi_{j}\right\rangle=1$ and $\left\langle\phi_{j} \mid \psi_{i}\right\rangle=0$ for all $i \neq j$ for $j=1, \ldots, m$ and $Q_{m+1}=I-\sum_{j=1}^{m} Q_{j}$. Evidently, a measurement of $\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$ will yield Q_{j} or Q_{m+1}.

Fidelity

Definition Let $\rho_{1}, \rho_{2} \in D_{n}$. Then the fidelity is defined by

Here, $\sqrt{\rho_{1}}$ is the positive semi-definite square root of ρ_{1}, and $\sqrt{\rho_{1}} \rho_{2} \sqrt{\rho_{1}}$ is positive semi-definite so that we can take its positive semi-definite square root.
Theorem Let $\rho_{1}, \rho_{2} \in \mathcal{S}(\mathcal{H})$. $\cdots \geq s_{n}$, then

$$
F\left(\rho_{1}, \rho_{2}\right)=F\left(\rho_{2}, \rho_{1}\right)=\left[\sum_{j=1}^{n} s_{1}\right]^{2},
$$

and the following conditions hold.
(1) For any unitary $U, F\left(U \rho_{1} U^{\dagger}, U \rho_{2} U^{\dagger}\right)=F\left(\rho_{1}, \rho_{2}\right)$.
(2) If ρ_{1} or ρ_{2} is a pure state, then $F\left(\rho_{1}, \rho_{2}\right)=\operatorname{tr}\left(\rho_{1} \rho_{2}\right)$.
(3) We have

$$
F\left(\rho_{1}, \rho_{2}\right) \in[0,1] .
$$

The equality $F\left(\rho_{1}, \rho_{2}\right)=1$ holds if and only if $\rho_{1}=\rho_{2}$. The equality $F\left(\rho_{1}, \rho_{2}\right)=0$ holds if and only if $\operatorname{tr}\left(\rho_{1} \rho_{2}\right)=0$, equivalently, $\sigma_{1}^{\prime} \sigma_{2}^{s}=0$ for any positive numbers r, s.

Other numerical functions on mixed states

- The trace distance: $\| \rho-d$ < is 2 th sum of the singular values of $\rho-\sigma$.

$$
0-
$$

- The relative entropy of two quantum states $\rho . \sigma \in D_{n}$ defined by

is another measure of the difference bethe the quantum states. If there is $|v\rangle \in \mathbb{C}^{n}$ such that $\sigma|v\rangle=0$ and $\langle v| \rho|v\rangle \neq 0$, then $S(\rho \| \sigma)=\infty$.
- The son Neumann entropy of a density matrix is defined as

$$
\angle
$$

$$
S_{1}-S_{2}=1
$$

where \ln is the natural \log function.

$$
\begin{aligned}
& =-\sum_{i=1}^{n} \lambda_{i} \ln \lambda_{i}
\end{aligned}
$$

Quantum Key distribution
Information are encrypted as $0-1$ sequences. Alice and Bob use a private key K, a (long) $0-1$ sequence to encrypt theiy messages so that M is encrypted as $\tilde{M} \ni M+K$ and decrypted $(\tilde{M}) K$. Problem How to exchanged the private key securely? Quantum properties offer solutions.

BB84 (Bennett and Brassard, 1984)
$\left.\begin{array}{l}1 \\ 0\end{array}\right)(\begin{array}{l}0 \\ 1\end{array} \underbrace{\left.\left\{\left|e_{0}\right\rangle,\left|e_{1}\right\rangle\right\rangle\right), B_{2}=\left\{\left|f_{0}\right\rangle,\left|f_{1}\right\rangle\right\} .}$.
$\frac{1}{4}\left[_{1}^{1} 1\right]-\frac{1}{2}\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]_{\text {Bob measures th }}^{\text {bases randomly. }}$
Bob measures the received photons, each with one of the two bases randomly.

- Then they exchange notes and identify the photons that were sent and measured using the same bases. There should be roughly $2 N$ such photons.
- They will use N of them to detect whether there is an eavesdropper, Eve, tampering their information.
- If Eve does intercept, the best things for her to do is to use B_{1} and B_{2} bases to measured the intercepted qubit, and then sends the measured qubit to Bob, using the same basis she obtains the measured result.
- Now, consider two cases. If Alice and Bob both used B_{1}, they should get a perfect match of information. However, if Eve has applied B_{1} or B_{2}, about $1 / 2$ of the times she would use B_{2}, and sent out the bit so that $1 / 2$ of the times that Bob will get the measured results agree with the photon sent by Alice.
- The same holds if both Alice and Bob used B2. So, roughly $1 / 4$ of the N-bits would disagree. Alice and Bob would deduce that someone has intercept the information if there is a huge discrepancy in the N-bits comparison, and should retry the process.

- AMice sends $8 N$ photons to Bob using $\left(4 e_{0}\right\rangle$ for 0 and $\left|f_{0}\right\rangle$ for $\left.\mu_{1}\right) ~\left(\ell_{0}\right.$
- Bob measures the received photons using B_{1} or B_{2} andomly

- Suppose Alice sends $\left|e_{0}\right\rangle$. If Bob uses B_{1}, he will obtain $\left|e_{0}\right\rangle$; if Bob uses B_{2}, he will obtain $\left|f_{0}\right\rangle$ or $\left|f_{1}\right\rangle$. If he gets $\left|f_{1}\right\rangle$, he knows that Alice has sent $\left|e_{0}\right\rangle$.
- Suppose Alice send $\left|f_{0}\right\rangle$. If Bob uses B_{2}, he will obtain $\left|f_{0}\right\rangle$; if he uses B_{1}, he will obtain $\left|e_{0}\right\rangle$ or $\left|e_{1}\right\rangle$. If he gets $\left|e_{1}\right\rangle$, he knows that Alice has sent $\left.f_{0}\right\rangle$.
- There are roughly $2 N$ photons that Bob will know with certaint.
- He will use N of them to check the presence of Eve.
- If Eve indeed present, $1 / 16$ of the bits will fails to match.

There are E91 and BBM92 protocols using entangled pairs and Bell-Inequalities to check the presence of Eve.

