Math 410 Quantum Computing Notes on Chapter 6

6.1 Quantum Integral Transform

Let $S_{n}=\{0, \ldots, N-1\}$ with $N=2^{n}$ and let K be an $N \times N$ complex matrix with entries $K(i, j)$ with $i, j \in S_{n}$. Then K is a QIT transform converting $f=(f(0), \ldots, f(N-1))^{t}$ to

$$
\tilde{f}=(\tilde{f}(0), \ldots, \tilde{f}(N-1))^{t} \quad \text { by } \quad \tilde{f}=K f .
$$

If K is unitary (invertible) then

$$
\left.f=K^{\dagger} \tilde{f} \quad \text { (respectively, } f=K^{-1} \tilde{f}\right)
$$

Proposition If $U|x\rangle=K|y\rangle$, then

$$
U\left[\sum_{x=0}^{2^{n}-1} f(x)|x\rangle\right]=\sum_{y=0}^{2^{n}-1} \tilde{f}(y)|y\rangle .
$$

6.2 Quantum Fourier Transform

Suppose $N=2^{n}, w=e^{2 \pi i / N} / \sqrt{N}$ and
$K=K(x, y)$ with $K(x, y)=\left(w_{n}^{-x y}\right)$.
Then $\tilde{f}=K f$ is a commonly used QFT.
Example When $n=1,2$.

6.3 Application of QFT to period finding

This is an essential component in the Shor's algorithm.
For a periodic function, $f: S_{n} \rightarrow S_{n}$, where $S_{n}=\mathbb{Z}_{2}^{n}$, we want to detect $P \in S_{n}$ such that

$$
f(x)=f(x+P) \quad \text { for all } x \in S_{n} .
$$

Example Let $n=3, P=2 ; f(0)=f(2)=f(4)=f(6)=a$,
$f(1)=f(3)=f(5)=f(7)=b$.
Step 1. Prepare $\left|\Psi_{0}\right\rangle=|0\rangle|0\rangle \in S_{3} \otimes S_{3}$.
Step 2. Apply $W_{3} \otimes I_{8}$ to $\left|\Psi_{0}\right\rangle$ and the oracle U_{f} to get $|\Psi\rangle=\gamma \sum_{x}|x\rangle|f(x)\rangle$.
Step 3. Apply $F=\left[e^{-2 \pi i x y / 8}\right] \otimes I_{n}$ to $|\Psi\rangle$ to get

$$
\begin{aligned}
\left|\Psi^{\prime}\right\rangle= & \gamma \sum_{x, y} e^{-2 \pi i x y / 8}|y, f(x)\rangle \\
= & \gamma|0\rangle[|f(0)\rangle+|f(1)\rangle+\cdots+|f(7)\rangle] \quad(y=0) \\
& +\gamma|1\rangle\left[|f(0)\rangle+e^{-2 \pi i / 8}|f(1)\rangle+\cdots+e^{-2 \pi i 7 / 8}|f(7)\rangle\right](y=1) \\
& +\quad \cdots \quad \cdots \\
& +\gamma|7\rangle\left[|f(0)\rangle+e^{-14 \pi i / 8}|f(1)\rangle+\cdots+e^{-14 \pi i 7 / 8}|f(7)\rangle\right](y=7) \\
= & \frac{1}{2}\left(|0, a\rangle+|0, b\rangle+|4, a\rangle+e^{-i \pi}|4, b\rangle\right) .
\end{aligned}
$$

Step 4. Measurement of the first register gives 0,4 . So the period is 2 .
Remark Table 6.2 is not accurate.

TABLE 6.3
Coefficient of a vector $|y\rangle|f(x)\rangle$ in the state
$\left|\Psi^{\prime}\right\rangle$ in which $f(0)=f(2)=f(4)=f(6)=a$
and $f(1)=f(3)=f(5)=f(7)=b$. The
amplitude of all the non-vanishing
coefficients is $1 / 2$.

$\|b\rangle$	\rightarrow	0	0	0	\leftarrow	0	0	0
$\|a\rangle$	\rightarrow	0	0	0	\rightarrow	0	0	0
	$\|0\rangle$	$1\rangle$	$\|2\rangle$	$\|3\rangle$	$\|4\rangle$	$\|5\rangle$	$\|6\rangle$	$\|7\rangle$

Remark In general, the observed value of the first register is one of

$$
\frac{1}{P} k \cdot 2^{n}, \quad k=0,1, \ldots, P-1 .
$$

6.4 Implementation of QFT

When $n=1 . U_{Q F T_{1}}=W_{1}$.
When $n \geq 2$, we need the controlled

$$
B_{j k}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{-i 2 \pi /(k-j+1)}
\end{array}\right) \text { for } k \geq j
$$

and the SWAP gate to implement $U_{Q F T_{2}}$.

(b)

PROPOSITION 6.3 The $n=2$ QFT gate is implemented as

$$
U_{\mathrm{QFT} 2}=\left(U_{\mathrm{H}} \otimes I\right) U_{12}\left(I \otimes U_{\mathrm{H}}\right) U_{\mathrm{SWAP}}
$$

Note $U_{Q F T_{n}}=U_{Q F T_{n}}^{t}$. So, \ldots
When $n=3$, we have the following.

When $n \geq 3$, we have the following.

Proposition QFT can be implemented using $O\left(n^{2}\right)$ elementary gates.

6.5 Walsh-Hadamard Transform

The kernel $W_{n}=\left((-1)^{x \cdot y}\right)$ defines the discrete integral transform

$$
\tilde{f}(y)=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}(-1)^{x \cdot y} f(x)
$$

6.6 Selective Phase Rotation Transform

The kernel $\operatorname{diag}\left(\theta_{0}, \ldots, \theta_{N-1}\right)$ defines the transform

$$
\tilde{f}(y)=\sum e^{i \theta_{x}} \delta_{x y} f(x)=e^{i \theta_{y}} f(y)
$$

Note that

$$
K_{1}=\left(\begin{array}{cc}
e^{i \theta_{0}} & 0 \\
0 & e^{i \theta_{1}}
\end{array}\right), \quad K_{2}=\left(\begin{array}{cccc}
e^{i \theta_{0}} & 0 & 0 & 0 \\
0 & e^{i \theta_{1}} & 0 & 0 \\
0 & 0 & e^{i \theta_{2}} & 0 \\
0 & 0 & 0 & e^{i \theta_{3}}
\end{array}\right)
$$

Here

$$
K_{2}=A_{0} A_{1},
$$

with

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{cccc}
e^{i \theta_{0}} & 0 & 0 & 0 \\
0 & e^{i \theta_{1}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), A_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & e^{i \theta_{2}} & 0 \\
0 & 0 & 0 & e^{i \theta_{3}}
\end{array}\right), \\
& A_{0}=|0\rangle\langle 0| \otimes U_{0}+|1\rangle\langle 1| \otimes I, \quad U_{0}=\left(\begin{array}{cc}
e^{i \theta_{0}} & 0 \\
0 & e^{i \theta_{1}}
\end{array}\right), \\
& A_{1}=|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes U_{1}, \quad U_{1}=\left(\begin{array}{cc}
e^{i \theta_{2}} & 0 \\
0 & e^{i \theta_{3}}
\end{array}\right) .
\end{aligned}
$$

Remark One can actually write

$$
K_{2}=\left(I \otimes K_{1}\right) \hat{A}_{2} \quad \text { with } \quad \hat{A}_{1}=\operatorname{diag}\left(1,1, e^{i\left(\theta_{2}-\theta_{0}\right)}, e^{i\left(\theta_{2}-\theta_{1}\right)}\right) .
$$

