Math 410 Quantum Computing C.K. Li \quad Notes on Chapter 7
§7.1 Search for a single file
Let $f: S_{n} \rightarrow\{0,1\}$ be defined by

$$
f(x)= \begin{cases}1 & \text { if } x=z \\ 0, & \text { if } x \neq z\end{cases}
$$

Step 1 Define the reflection R_{f} such that $R_{f}=I-2|z\rangle\langle z|$. We have

$$
R_{f} f=\sum_{x} f(x) R_{f}|x\rangle=\sum_{x}(-1)^{f(x)}|x\rangle .
$$

Here, we simply have $(I-2|z\rangle\langle z|)\left(\sum_{j=1}^{N} f(x)|x\rangle=\ldots\right)$.

Step 2 Construct

$$
D=2\left|\varphi_{0}\right\rangle\left\langle\varphi_{0}\right|-I_{N}=W_{n}\left(2|0\rangle\langle 0|-I_{N}\right) W_{n}=2 J_{N} / N-I_{N},
$$

where J_{N} is the matrix with all entries equal to 1 .
If $|w\rangle=\left(\begin{array}{c}w_{0} \\ \vdots \\ w_{N-1}\end{array}\right)$, then

$$
D|w\rangle=\left(2 J_{N} / N-I\right)|w\rangle=2 \hat{w}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)-\left(\begin{array}{c}
w_{0} \\
\vdots \\
w_{N-1}
\end{array}\right)
$$

with $\hat{w}=\left(\sum_{j} w_{j}\right) / N$.

Step 3 Construct $U_{f}=D R_{f}$ its action on $\left|\varphi_{0}\right\rangle=\sum_{x}|x\rangle$. Then

$$
\left|\varphi_{k}\right\rangle=U_{f}^{k}\left|\varphi_{0}\right\rangle=a_{k}|z\rangle+b_{k} \sum_{x \neq z}|x\rangle
$$

such that $a_{0}=b_{0}=1 / \sqrt{N}$. For $k \geq 1$ we have

$$
\binom{a_{k}}{b_{k}}=\frac{1}{N}\left(\begin{array}{cc}
N-2 & 2(N-1) \\
-2 & N-2
\end{array}\right)\binom{a_{k-1}}{b_{k-1}} .
$$

Remark Note that

$$
\begin{aligned}
U_{f}\left|\varphi_{k-1}\right\rangle & =\left(2 J_{N} / N-I\right)(I-2|z\rangle\langle z|)\left|\varphi_{k-1}\right\rangle \\
& =\left(2 J_{N} / N-I\right)\left(b_{k-1}, \ldots, b_{k-1},-a_{k-1}, b_{k-1}, \ldots, b_{k-1}\right)^{t} \\
& =\left(b_{k}, \ldots, b_{k}, a_{k}, b_{k}, \ldots, b_{k}\right)^{t} .
\end{aligned}
$$

Let $c_{k}=\sqrt{N-1} b_{k}$. If $\left(a_{0}, c_{0}\right)=(1, \sqrt{N-1}) / \sqrt{N}=(\sin \theta, \cos \theta)$, then

$$
\binom{a_{k}}{c_{k}}=\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta
\end{array}\right)\binom{a_{k-1}}{c_{k-1}}=\binom{\sin [(2 k+1) \theta]}{\cos [(2 k+1) \theta]} .
$$

Step 4 Maximize $P_{z, k}^{2}=a_{k}^{2}$ by putting $(2 k+1) \theta \approx \pi / 2$. For large N we have $m=\lfloor\pi / 4 \theta\rfloor$ so that $m=O(\sqrt{N})$.

§7.2 Search for d files

Let $A \subseteq S_{n}$ have d elements, and $f: S_{n} \rightarrow\{0,1\}$ be defined by

$$
f(x)= \begin{cases}1 & \text { if } x \in A, \\ 0, & \text { if } x \notin A .\end{cases}
$$

Step 1 Define the reflection R_{f} such that

$$
R_{f}=I-2 \sum_{z \in A}|z\rangle\langle z| .
$$

Then for $|\varphi\rangle=\sum_{x=0}^{N-1} w_{x}|x\rangle, R_{f}(\varphi)=\sum_{x \notin A} w_{x}|x\rangle-\sum_{z \in A} w_{z}|z \in A\rangle$.
Step 2 Construct $D=-I+2\left|\varphi_{0}\right\rangle\langle | \varphi_{0} \mid$ with $\left|\varphi_{0}\right\rangle=\sum_{x=0}^{N}|x\rangle / \sqrt{N}$.

Step 3 Construct $U_{f}=D R_{f}$ and its action on $|\varphi\rangle=\sum_{x} w_{x}|x\rangle$ with $\sum_{x}\left|w_{x}\right|^{2}=1$.
Then $U_{f}^{k}\left|\varphi_{0}\right\rangle=a_{k} \sum_{z \in A}|z\rangle+b_{k} \sum_{x \notin A}|x\rangle$ such that $a_{0}=b_{0}=1 / \sqrt{N}$ and for $k \geq 1$ we have

$$
\binom{a_{k}}{b_{k}}=\frac{1}{N}\left(\begin{array}{cc}
N-2 d & 2(N-d) \\
-2 d & N-2 d
\end{array}\right)\binom{a_{k-1}}{b_{k-1}}
$$

so that

$$
\binom{a_{k}}{b_{k}}=\binom{(\sin [(2 k+1) \theta]) / \sqrt{d}}{(\cos [(2 k+1) \theta]) / \sqrt{N-d}} \quad \text { with } \quad\binom{\sin \theta}{\cos \theta}=\binom{\sqrt{d / N}}{\sqrt{1-d / N}} .
$$

Grover's Search Algorithm

