An invitation to Quantum Computing C.K. Li Week 9

## Quantum operations with special properties

## Image processing

- A black and white picture can be stored as an $m \times n$ matrix $A=\left(a_{i j}\right) \in M_{m, n}$
- Each entry $a_{i j} \in[0,1]$ is a "pixel" with a certain grey level.
- A color picture can be encoded store as three matrices $A_{r}, A_{b}, A_{g} \in M_{m, n}$ using the three baic colors: red, blue, green.
- One may process the image by manipulating the matrix $A$.
- Some examples:
* Data compression: singular value decomposition.
* Special pattern finding: find some special patterns, say,
finding roads, edges, different geographical features.
* Image recognition: comparing a given picture with some given pictures.
* Classification (AI) problems: classify pictures with similarity.
- Question. How does quantum computer help?


## Basic question

How to encode $A \in M_{m, n}$ as a quantum state $|v\rangle \in \mathbf{C}^{m n}$ ?
We can assume $m=2^{p}$ and $n=2^{q}$. Then we can assume $|v\rangle \in 2^{p+q}$, arranging the entries of first rows, second rows, etc.

Answer Need to find simple unitary $U$ such that $V|0 \cdots 0\rangle=|v\rangle$, equivalently, $U|v\rangle=|0 \cdots 0\rangle$.

- For $|v\rangle \in \mathbf{C}^{2}$, we can use $U \in \mathbf{U}(2)$ such that $U|v\rangle=|0\rangle$.
- For $|v\rangle \in \mathbf{C}^{4}$, we can find $U_{1}, U_{2}, U_{3} \in \mathbf{U}(2)$ such that

$$
\begin{aligned}
& \left(I_{2} \otimes U_{1}\right)|v\rangle=\left(c, 0, s_{1}, s_{2}\right)^{t}, \\
& \left.\left(I_{2} \oplus U_{2}\right)\left(c, 0, s_{1}, s_{2}\right)^{t}=c, 0, s, 0\right)^{t}, \\
& \left(U_{3} \otimes I_{2}\right)(c, 0, s, 0)^{t}=(1,0,0,0)^{t} .
\end{aligned}
$$

So, we can use two 0-controlled, one 1-controlled qubit gates.

- For $|v\rangle \in \mathbf{C}^{8}$, we use $U_{1}, U_{2} \in \mathbf{U}(4), U_{0} \in \mathbf{U}(2)$ such that

$$
\begin{aligned}
& I_{2} \otimes U_{1}|v\rangle=\left|v_{1}\right\rangle=\left(c, 0,0,0, s_{1}, s_{2}, s_{3}, s_{4}\right)^{t}, \\
& I_{4} \otimes U_{2}\left|v_{1}\right\rangle=(c, 0,0,0, s, 0,0,0)^{t},
\end{aligned}
$$

which can be change to $|000\rangle$ by a 0 -controlled gate.

- Let $c_{n, k}$ be the number of $k$-controlled gates needed for

$$
\begin{aligned}
& k=0, \ldots, n-1 . \text { Then } c_{1,0}=1, \quad\left(c_{2,0}, c_{2,1}\right)=(2,1), \\
& \left(c_{3,0}, c_{3,1}, c_{3,2}\right)=(2,1,0)+(0,2,1)+(1,0,0)=(3,3,1) .
\end{aligned}
$$

- In general, $c(n, k)=\binom{n}{k+1}$.


## Quantum states with specific images

Question Given $\left\{\left|u_{1}\right\rangle, \ldots,\left|u_{k}\right\rangle\right\},\left\{\left|v_{1}\right\rangle, \ldots,\left|v_{k}\right\rangle\right\} \subseteq \mathbf{C}^{n}$, does there exist $U \in \mathbf{U}(n)$ such that

$$
U\left|u_{j}\right\rangle=\left|v_{j}\right\rangle, \quad j=1, \ldots, k
$$

Answer The two Gram matrices $\left(\left\langle u_{i} \mid u_{j}\right\rangle\right),\left(\left\langle v_{i} \mid v_{j}\right\rangle\right) \in M_{k}$ are equal.
Question Given $\left\{\left|u_{0}\right\rangle,\left|u_{1}\right\rangle, \ldots\right\} \subseteq \mathbf{C}^{n}$, does there exist $U \in \mathbf{U}(n)$ such that

$$
U\left|u_{j}\right\rangle=\left|u_{j+1}\right\rangle, \quad j=0,1,2, \ldots
$$

Answer The matrix $\left(\left\langle u_{i} \mid u_{j}\right\rangle\right)_{i, j=0,1, \ldots}=\left(\left\langle u_{i} \mid u_{j}\right\rangle\right)_{i, j=1,2, \ldots}$, i.e., the matrix is Toeplitz.

Actually, we only need to check the leading $n \times n$ submatrix, or $k \times k$ submatrix if $\operatorname{span}\left\{\left|u_{j}\right\rangle: j=0,1, \ldots\right\}$ has dimension $k$.

## Results for open systems

Recall that mixed states are density matrices in $M_{n}$. A general quantum operation $\Phi: M_{n} \rightarrow M_{m}$ is a TPCP maps admitting the operator sum representation

$$
\Phi(A)=F_{1} A F_{1}^{\dagger}+\cdots+F_{r} A F_{r}^{\dagger} \quad \text { for all } A \in M_{n}
$$

for some $m \times n$ matrices $F_{1}, \ldots, F_{r}$ satisfying $F_{1}^{\dagger} F_{1}+\cdots+F_{r}^{\dagger} F_{r}=I_{n}$.
The following result is due to A. Chefles, R. Jozsa, and A. Winter, 2004.

Theorem Let $\left\{\left|u_{1}\right\rangle, \ldots,\left|u_{k}\right\rangle\right\} \subseteq \mathbf{C}^{n}$ and $\left\{\left|v_{1}\right\rangle, \ldots,\left|v_{k}\right\rangle\right\} \subseteq \mathbf{C}^{m}$. There is a quantum operation $\Phi: M_{n} \rightarrow M_{m}$ satisfying

$$
\Phi\left(\left|u_{j}\right\rangle\left\langle u_{j}\right|\right)=\left|v_{j}\right\rangle\left\langle v_{j}\right| \quad \text { for all } j=1, \ldots, k,
$$

if and only if there is a correlation matrix $C=\left(c_{i j}\right)$ such that

$$
\left(\left\langle u_{i} \mid v_{j}\right\rangle\right)=C \circ\left(\left\langle v_{i} \mid v_{j}\right\rangle\right),
$$

the Schur product (a.k.a. Hadamard or entry-wise product), i.e.,

$$
\left\langle u_{i} \mid u_{j}\right\rangle=c_{i j}\left\langle v_{i} \mid v_{j}\right\rangle \quad \text { for all } 1 \leq i, j \leq k .
$$

## Some general results

In 2012, Z. Huang, C.K. Li, E. Poon and N.S. Sze, obtained some general results for the existence of TPCP map $\Phi\left(A_{j}\right)=B_{j}$ for $j=$ $1, \ldots, k$, with $\left\{A_{1}, \ldots, A_{k}\right\} \subseteq D_{n},\left\{B_{1}, \ldots, B_{k}\right\} \subseteq D_{m}$. There were results for diagonal matrices [ Li and Y. Poon, 2011], and compact diagonal operators [Hsu, Kuo, Tsai, 2014].

Theorem Let

$$
\left\{A_{j}=\left|u_{j}\right\rangle\left\langle u_{j}\right|: 1 \leq j \leq k\right\} \subseteq D_{n} \text { and }\left\{B_{1}, \ldots, B_{k}\right\} \subseteq D_{m}
$$

There is $\Phi: M_{n} \rightarrow M_{m}$ such that $T\left(A_{j}\right)=B_{j}$ for $j=1, \ldots, k$ if and only if there is a purifcation of $\left|v_{j}\right\rangle\left\langle v_{j}\right|$ of $B_{j}$ for $j=1, \ldots, k$ such that $\left(\left\langle u_{i} \mid u_{j}\right\rangle\right)=\left(\left\langle v_{i} \mid v_{j}\right\rangle\right)$.

- The general condition for $\Phi$ sending mixed states to mixed states are very technical.
- It depends on the spectral decomposition, solution of certain matrix equations, etc.


## More results and questions

- For any $\rho \in D_{n}, \sigma \in D_{m}$, the map $A \mapsto(\operatorname{Tr} A) \sigma$ is a TPCP map sending all states to $\sigma$.
- Let $A_{1}, A_{2} \in D_{n}, B_{1}, B_{2} \in D_{m}$. The condition of the existence of a TPCP map $\Phi: M_{n} \rightarrow M_{m}$ such that

$$
\left(\Phi\left(A_{1}\right), \Phi\left(A_{2}\right)\right)=\left(B_{1}, B_{2}\right) \text {, i.e., } \Phi\left(A_{1}+i A_{2}\right)=B_{1}+i B_{2}
$$

is not known.

- For qubit states, we may assume that $A_{1}, A_{2}$ are pure state. Then $\Phi$ exists if and only if

$$
\operatorname{Tr} \sqrt{A_{1}^{1 / 2} A_{2} A_{1}^{1 / 2}} \leq \operatorname{Tr} \sqrt{B_{1}^{1 / 2} B_{2} B_{1}^{1 / 2}}
$$

- Suppose $\left\{A_{1}, \ldots, A_{4}\right\} \subseteq D_{2}$ are linearly independent. There is a unique linear map satisfying $\Phi\left(A_{j}\right)=B_{j}$ for $j=1, \ldots, 4$. It is then easy to determine whether $\Phi$ is TPCP.
- Suppose $\left\{A_{1}, A_{2}, A_{3}\right\},\left\{B_{1}, B_{2}, B_{3}\right\} \subseteq D_{2}$ such that

$$
A_{j}=\left|u_{j}\right\rangle\left\langle u_{j}\right| \text { for } j=1,2,3, \text { are linearly independent. }
$$

Let $\left|u_{3}\right\rangle=\alpha_{1}\left|u_{1}\right\rangle+\alpha_{2}\left|u_{2}\right\rangle$, and $\hat{B}_{3}=\left|\alpha_{1} u_{1}\right\rangle\left\langle\alpha_{2} u_{2}\right|+\left|\alpha_{2} u_{2}\right\rangle\left\langle\alpha_{1} u_{1}\right|$. Then there is a TPCP map sending $A_{j}$ to $B_{j}$ for $j=1,2,3$, if and only if there is $C \in M_{2}$ such that

$$
\begin{aligned}
& \operatorname{Tr}\left(C C^{*}\right)= 1+|\operatorname{det}(C)|^{2} \leq 2, \hat{B}_{3}=\operatorname{Re}\left(\sqrt{B_{2}} C \sqrt{B_{1}}\right) \\
& \operatorname{Tr} \sqrt{B_{2}} C \sqrt{B_{1}}=\left\langle\alpha_{1} u_{1} \mid \alpha_{2} u_{2}\right\rangle
\end{aligned}
$$

- Question. Find a simpler condition.
- Current research with Ray-Kuang Lee. Let $\left\{\rho_{0}, \rho_{1}, \ldots\right\} \subseteq D_{n}$. Determine TPCP maps $\Phi$ such that $\Phi\left(\rho_{j}\right)=\rho_{j+1}$ for $j=$ $0,1, \ldots$.

