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Controllability of dynamical systems

Abstract. The paper contains systems descriptions and fundamental results concerning
the solution of the most popular linear continuous-time control models with constant
coefficients. First, different kinds of stability are discussed. Next fundamental definitions
of controllability both for finite-dimensional and infinite-dimensional systems are recalled
and necessary and sufficient conditions for different kinds of controllability are formulated.
Moreover, fundamental definitions of controllability both for finite-dimensional and

infinite-dimensional control systems are presented and necessary and sufficient conditions
for different kinds of controllability are given. Finally, concluding remarks and comments
concerning possible extensions are presented.
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1. Introduction. Controllability is one of the fundamental concepts in
modern mathematical control theory. This is qualitative property of control
systems and is of particular importance in control theory. Systematic study
of controllability was started at the beginning of sixties in XX century and
theory of controllability is based on the mathematical description of the
dynamical system.
Many dynamical systems are such that the control does not affect the

complete state of the dynamical system but only a part of it. On the other
hand, very often in real industrial processes it is possible to observe only
a certain part of the complete state of the dynamical system. Therefore, it is
very important to determine whether or not control of the complete state of
the dynamical system is possible. Roughly speaking, controllability generally
means, that it is possible to steer dynamical system from an arbitrary initial
state to an arbitrary final state using the set of admissible controls.
Controllability plays an essential role in the development of the mo-

dern mathematical control theory. There are important relationships be-
tween controllability, stability and stabilizability of linear control systems

[57]
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[2], [3]. Controllability is also strongly connected with the theory of mini-
mal realization of linear time-invariant control systems. Moreover, it should
be pointed out that there exists a formal duality between the concepts of
controllability and observability [2], [5].
In the literature there are many different definitions of controllability

and stability which depend on the type of dynamical control system [1-10].
The main purpose of this paper is to present a compact review over the exi-
sting controllability results mainly for linear continuous-time, time-invariant
control systems. It should be pointed out, that for linear control dynami-
cal systems, the most popular controllability conditions have pure algebraic
forms and hence are rather easily computable. These conditions require ve-
rification of the rank conditions for suitable defined constant controllability
matrix.
This survey article is divided into sections and subsections and is orga-

nized as follows. Section 2 contains systems descriptions and fundamental
results concerning the solution of the most popular and most frequently used
linear continuous-time control models with constant coefficients. Section 3
presents fundamental definitions of controllability and the most frequently
used sufficient and necessary conditions for different kinds of controllability.
In Section 4 under suitable assumptions minimum energy control problem
is analytically solved. Section 5 contains fundamental definition of control-
lability for linear infinite-dimensional dynamical systems and necessary and
sufficient conditions for approximate controllability. Section 6 is devoted to
a study of controllability for distributed parameters systems described by
linear partial differential equations. Since the article should be limited to
a reasonable size, it is impossible to give a full survey on the subject. In
consequence, only selected fundamental results without proofs are presen-
ted. The wide treatment on controllability problems for different dynamical
systems can be found in the monographs [1], [3], [5].

2. Mathematical model. In the theory of linear time-invariant dy-
namical control systems the most popular and the most frequently used
mathematical model is given by the following differential state equation and
algebraic output equations

x′(t) = Ax(t) +Bu(t)(1)

y(t) = Cx(t)(2)

where x(t) ∈ Rn is a state vector, u(t) ∈ Rm is an input vector, y(t) ∈ Rp

is an output vector, t ≥ 0, A, B and C are real matrices of appropriate
dimensions.
It is well known that for a given initial state x(0) ∈ Rn and control

u(t) ∈ Rm, t ≥ 0, there exist unique solution x(t;x(0), u) ∈ Rn of the
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differential state equation (1) of the following form

x(t;x(0), u) = etAx(0) +
t∫

0

e(t−s)ABu(s)ds

Let P be an n × n constant nonsingular transformation matrix and let
us define the equivalence transformation z(t) = Px(t). Then the differential
state equation (1) and output equation (2) becomes

z′(t) = Jz(t) +Gu(t)(3)

y(t) = Hz(t)(4)

where J = PAP−1, G = PB and H = CP−1.
Dynamical systems (1), (2) and (3), (4) are said to be equivalent and

many of their properties are invariant under the equivalence transformations.
Taking into account controllability concept, among different equivalence

transformations special attention should be paid on the transformation,
which leads to the so-called Jordan canonical form of dynamical system
(1). In the case when the n×n dimensional matrix J is in Jordan canonical
form, then the equation (3), (4) are said to be in a Jordan canonical form.
Moreover, it should be stressed, that every dynamical system (1), (2) has
an equivalent Jordan canonical form.

3. Controllability
3.1. Fundamental results. Now, let us recall the most popular and most

frequently used fundamental definition of controllability for linear control
systems with constant coefficients.

Definition 1. Dynamical system (1) is said to be controllable if for
every initial condition x(0) and every vector x1 ∈ Rn, there exist a finite
time t1 and control u(t) ∈ Rm, t ∈ [0, t1], such that x(t1;x(0), u) = x1.

This definition requires only that any initial state x(0) can be steered to
any final state x1 at time t1. However, the trajectory of the dynamical system
(1) between 0 and t1 is not specified. Furthermore, there is no constraints
posed on the control vector u(t) and the state vector x(t).
In order to formulate easily computable algebraic controllability criteria

let us introduce the so-called controllability matrix W , which is known as
Kalman matrix and defined as follows.

W = [B|AB|A2B| . . . |AkB| . . . |An−1B].

It should be pointed out, that controllability matrix W is an n × nm-
dimensional constant matrix and depends only on system parameters.

Theorem 1. Dynamical system (1) is controllable if and only if

rank W = n.
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Proof (a sketch). First of all, from Definition 1 and the form of solution
of the state equation it follows, that dynamical system (1) is controllable if
and only if for certain time t = t1 the range of integral operator

t1∫
0

e(t1−s)ABu(s)ds

is the whole state space Rn. However, since et1A is nonsingular for any t1,
then this is true if and only if symmetric n × n constant matrix

t1∫
0

e−sABBT e−sAT

ds

is nonsingular. Taking into account Taylor series expansion of e(−sA) and the
well known Cayley-Hamilton theorem we conclude, that dynamical system
is controllable if and only if rank W = n.

Corollary 1. Dynamical system (1) is controllable if and only if the
n × n-dimensional symmetric matrix WW T is nonsingular.

Since the controllability matrixW does not depend on time t1, then from
Theorem 1 and Corollary 1 it directly follows, that in fact controllability
of dynamical system does not depend on the length of control interval.
However, this statement is valid only for dynamical systems (1) without
any constraints posed on the control vector y(t) and the state vector x(t).
Let us observe that in many cases in order to check controllability, it is

not necessary to calculate whole controllability matrix W , but only a ma-
trix with the same number of rows but with a smaller number of columns.
It depends on the rank of the matrix B and the degree of the minimal po-
lynomial for the matrix A, where the minimal polynomial is the polynomial
of the lowest degree, which annihilates matrix A. This observation is based
on the following Corollary.

Corollary 2. Let rank B = r, and q is the degree of the minimal
polynomial of the matrix A. Then dynamical system (1) is controllable if
and only if

rank [B|AB|A2B| . . . |AkB| . . . |An−kB] = n

where the integer k ≤ min(n − r, q − 1).
In the case when the eigenvalues of the matrix A, si, i = 1, 2, 3, . . . , n, are

known, we can check controllability using necessary and sufficient condition
given in the following Corollary, which is known as Hautus criterion.

Corollary 3. Dynamical system (1) is controllable if and only if

rank [siI − A|B] = n for all si ∈ sp(A), i = 1, 2, 3, . . . , n.
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Suppose that the dynamical system (1) is controllable. Then the dyna-
mical system remains controllable after the equivalence transformation in
the state space Rn. This is natural and intuitively clear because an equiva-
lence transformation changes only the basis of the state space and does not
change the properties of the dynamical system (1). Therefore, we have the
following Corollary.

Corollary 4. Controllability of the dynamical system (1) is invariant
under any equivalence transformation in the state space Rn.

Since controllability of dynamical system (1) is preserved under any equ-
ivalence transformation, then it is possible to obtain simpler controllability
criteria by transforming the original differential state equation (1) into its
special canonical form (3). For example, if we transform dynamical system
(1) into Jordan canonical form, then controllability can be determined very
easily, almost by inspection [5].

3.2. Stabilizability. It is well known that for linear dynamical system (1)
there are certain relationships between controllability and stability. In order
to explain these connections, let us introduce stability definitions. First we
need the concept of equilibrium state.

Definition 2. A state xe of a dynamical system (1) is said to be an
equilibrium state if and only if xe = x(t;xe, 0) for all t ≥ 0.
We see from this definition that if a trajectory reaches an equilibrium

state and if no input is applied the trajectory will stay at the equilibrium
state forever. Clearly, for linear dynamical systems the zero state is always
an equilibrium state.

Definition 3. An equilibrium state xe is said to be stable if and only
if for any positive ε, there exists a positive number δ(ε) such that inequality

‖x(0)− xe‖ ≤ δ

implies that
‖x(t;x(0), 0) − xe‖ ≤ ε for all t ≥ 0.

Roughly speaking, an equilibrium state xe is stable if the response due
to any initial state that is sufficiently near to xe will not move far away
from xe. If the response will, in addition, go back to xe, then xe is said to
be asymptotically stable.

Definition 4. An equilibrium state xe is said to be asymptotically
stable if it is stable in the sense of Lyapunov and if every motion starting
sufficiently near to xe converges to xe as t → ∞.
Let us denote

si = Re(si) + jIm(si), i = 1, 2, 3, . . . , r, r ≤ n,
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the distinct eigenvalues of the matrix A and let “Re” and “Im” stand for
the real part and the imaginary part of the eigenvalue si, respectively.

Theorem 2. Every zero state of the dynamical system (1) is stable if and
only if all eigenvalues of the matrix A have nonpositive (negative or zero)
real parts, i.e., Re(si) ≤ 0 for i = 1, 2, 3, . . . , r and those with zero real parts
are simple zeros of the minimal polynomial of the matrix A.

Theorem 3. The zero state of the dynamical system (1) is asymptotically
stable if and only if all eigenvalues of the matrix A have negative real parts
i.e.,

Re(si) ≤ 0 for i = 1, 2, 3, . . . , r.

From the above Theorems directly follows, that stability and asympto-
tic stability of a dynamical system depend only on the matrix A and are
independent of the matrices B, and C.
Suppose that the dynamical system (1) is stable or asymptotically stable,

then the dynamical system remains stable or asymptotically stable after
arbitrary equivalence transformation. This is natural and intuitively clear
because an equivalence transformation changes only the basis of the state
space. Therefore, we have the following Corollary.

Corollary 5. Stability and asymptotic stability are both invariant under
any equivalence transformation.

It is well known, that the controllability concept for linear dynamical
system (1) is strongly related to its stabilizability by the linear static state
feedback of the following form

(5) u(t) = Kx(t) + v(t)

where v(t) ∈ Rm is a new control vector andK ism×n-dimensional constant
state feedback matrix.
Introducing the linear static state feedback given by equality (5) we

directly obtain new linear differential state equation for the feedback linear
dynamical system of the following form

(6) x′(t) = (A+BK)x(t) +Bv(t)

which is characterized by the pair of constant matrices (A+BK, B).
An interesting result is the equivalence between controllability of the

dynamical systems (1) and (6), explained in the following Corollary.

Corollary 6. Dynamical system (1) is controllable if and only if for
any arbitrary matrix K the dynamical system (6) is controllable.

From Corollary 6 it follows that under controllability assumption we can
arbitrarily form the spectrum of dynamical system (1) by the introduction of
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suitable defined linear static state feedback (5). Hence, we have the following
result.

Theorem 4. The pair of matrices (A,B) represents the controllable dy-
namical system (1) if and only if for each set Λ consisting of n complex
numbers and symmetric with respect to real axis, there exists constant state
feedback matrix K such that the spectrum of the matrix (A + BK) is equal
to the set Λ.

Practically, in the design of the dynamical system, sometimes it is requ-
ired only to change unstable eigenvalues (i.e., the eigenvalues with nonnega-
tive real parts) into stable eigenvalues (i.e., the eigenvalues with negative real
parts). This is called stabilization of the dynamical system (1). Therefore,
we have the following formal definition of stabilizability.

Definition 5. Dynamical system (1) is said to be stabilizable if there
exists a constant static state feedback matrix K such that the spectrum of
the matrix (A+BK) entirely lies in the left-hand side of the complex plane.

Let Re(sj) ≥ 0 for j = 1, 2, 3, . . . , q ≤ n, i.e. sj , are unstable eigenvalues
of the dynamical system (1). An immediate relation between controllability
and stabilizability of dynamical system (1) gives the following Theorem.

Theorem 5. Dynamical system (1) is stabilizable if and only if all its
unstable modes are controllable i.e.,

rank [sjI − A|B] = n for j = 1, 2, 3, . . . , q.

Comparing Theorem 5 and Corollary 3 we see, that controllability of
dynamical system (1) always implies its stabilizability, but the converse
statement is not always true. Therefore, stabilizability concept is essentially
weaker than the controllability property.

3.3. Output controllability. Similar to the state controllability of dyna-
mical control system, it is possible to define the so-called output control-
lability for the output vector y(t) ∈ Rp of dynamical system. Although
these two concepts are quite similar, it should be mentioned that the state
controllability is a property of the differential state equation (1), whereas
the output controllability is a property both of the state equation (1) and
algebraic output equation (2).

Definition 6. Dynamical system (1), (2) is said to be output control-
lable if for every y(0) and every vector y1 ∈ Rp, there exist a finite time t1
and control u1(t) ∈ Rm, that transfers the output from y(0) to y1 = y(t1).

Therefore, output controllability generally means, that we can steer out-
put of dynamical system independently of its state vector.
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Theorem 6. Dynamical system (1), (2) is output controllable if and only
if

rank [CB|CAB|CA2B| . . . |CAkB| . . . |CAn−1B] = p.

It should be pointed out, that the state controllability is defined only
for the linear differential state equation (1), whereas the output controlla-
bility is defined for the input-output description i.e., it depends also on the
linear algebraic output equation (2). Therefore, these two concepts are not
necessarily related.
Let us recall, that if the control system is output controllable, its output

can be transferred to any desired vector at certain instant of time. However,
a related problem is whether it is possible to steer the output following
a given curve over any interval of time. A control system whose output can
be steered along the arbitrary given curve over any interval of time is said
to be output function controllable or functional reproducible. Conditions
for function output controllability are essentially more restrictive than for
output controllability.

3.4. Controllability with Constrained Controls. In practice admissible
controls are required to satisfy additional constraints. Let U ⊂ Rm be an
arbitrary set and let the symbolM(U) denotes the set of admissible controls,
i.e., the set of controls u(t) ∈ U for t ∈ [0,∞].

Definition 7. Dynamical system (1) is said to be U -controllable to
zero if for any initial state x(0) ∈ Rn there exist a finite time t1 < ∞ and
an admissible control u(t) ∈ M(U), t ∈ [0, t1], such that x(t1;x(0), u) = 0.

Definition 8. Dynamical system (1) is said to be U -controllable from
zero if for any final state x1 ∈ Rn there exist a finite time t1 < ∞ and an
admissible control u(t) ∈ M(U), t ∈ [0, t1], such that x(t1; 0, u) = x1.

Definition 9. Dynamical system (1) is said to be U -controllable if for
any initial state x(0) ∈ Rn, and any final state x1 ∈ Rn, there exist a finite
time t1 < ∞ and an admissible control u(t) ∈ M(U), t ∈ [0, t1], such that
x(t1;x(0), u) = x1.

Generally, for arbitrary given set U it is rather difficult to give easily com-
putable criteria for constrained controllability. However, for certain special
cases of the set U it is possible to formulate and prove algebraic constrained
controllability conditions.

Theorem 7. Dynamical system (1 ) is U -controllable to zero if and only
if all the following conditions are satisfied simultaneously :
(1) there exists w ∈ U such that Bw = 0,
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(2) the convex hull conv (U) of the set U has nonempty interior in the
space Rm,
(3) rank [B|AB|A2B| . . . |AkB| . . . |An−1B] = n,
(4) there is no real eigenvector v ∈ Rn of the matrix AT satisfying

vTBw ≤ 0 for all w ∈ U ,
(5) no eigenvalue of the matrix A has a positive real part.

For the single input system i.e., m = 1, Theorem 7 reduces to the follo-
wing Corollary.

Corollary 7. Suppose that m = 1 and U = [0, 1]. Then dynamical
system (1) is U -controllable to zero if and only if it is controllable without
any constraints i.e.,

rank [B|AB|A2B| . . . |AkB| . . . |An−1B] = n

and matrix A has no real eigenvalues.

Theorem 8. Suppose the set U is a cone with vertex at zero and a no-
nempty interior in the space Rm. Then dynamical system (1) is U -control-
lable from zero if and only if
(1) rank [B|AB|A2B| . . . |AkB| . . . |An−1B] = n,
(2) there is no real eigenvector v ∈ Rn of the transposed matrix AT

satisfying

vTBw ≤ 0 for all w ∈ U.

In the special case for the single input system i.e., m = 1, Theorem 8
reduces to the following simple Corollary.

Corollary 8. Suppose that m = 1 and U = [0, 1]. Then dynamical
system (1) is U -controllable from zero if and only if it is controllable without
any constraints; in other words, rank [B A B A2B . . . An−1B] = n and
matrix A has no real eigenvalues.

3.5. Controllability after the introducing of sampling. We consider now
the case in which the control vector u(t) is piecewise constant i.e., the control
u(t) changes value only at a given discrete instant of time. Inputs of this type
occur in sampled-data dynamical systems or in dynamical systems in which
digital computers are used to generate the control vector u(t). A piecewise-
constant control u(t) is often generated by a sampler and a filter, called
zero-order hold. In this case we have

u(t) = u(k) for kT ≤ t < (k + 1)T, k = 0, 1, 2, . . .

where T is a positive constant, called the sampling period. The discrete
times 0, T, 2T, . . . are called sampling instant.
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The behavior at sampling instant 0, T, 2T, . . . of the dynamical system
(1), (2) with the piecewise-constant inputs are described by the discrete-time
linear difference state equations and output equations

x(k + 1) = Ex(k) + Fu(k)(7)

y(k) = Cx(k)(8)

where constant matrices E and F of appropriate dimensions can be compu-
ted using solution of the differential state equation (1) as follows

E = eAT , F =

(
T∫

0

esAds

)
B

In the case when the continuous-time dynamical system (1) is controlla-
ble, it is of interest to study whether the dynamical system remains control-
lable after the introducing of sampling or equivalently, whether discrete-time
dynamical system (7) is also controllable. This problem is solved in the next
theorem.

Theorem 9. Let us assume that the dynamical system (1 ) is controllable.
Then the discrete-time system (7) is also controllable if

Im(si − sj) �= 2πq/T for q = . . . − 2,−1,+1,+2, . . .
whenever Re(si − sj) = 0.

Hence, condition given in Theorem 9 is only a sufficient condition for
controllability of discrete-time dynamical system (7). However, in special
case when the input u(t) is scalar function we have the following Corollary.

Corollary 9. For the single-input case i.e., for m = 1, the condition
stated in Theorem 9 is necessary as well.

Finally, for dynamical systems with only real eigenvalues the following
two simple Corollaries can be stated.

Corollary 10. If the dynamical system (1) is controllable and has only
real eigenvalues i.e.,

Im(si) = 0 for i = 1, 2, 3, . . . , r,

then the discrete-time system (7) is always controllable.

Corollary 11. Dynamical system (1) with single input and only real
eigenvalues is controllable if and only if the discrete-time dynamical system
(7) is controllable.

3.6. Perturbations of controllable dynamical systems. In practice the fun-
damental problem is the question, which bounded perturbations of the pa-
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rameters of the dynamical system (1) preserve controllability. This problem
is explained in the next Theorem.

Theorem 10. Suppose that dynamical system (1) is controllable. Then
there exists ε > 0 such that if

(9) ‖A − F‖+ ‖B − G‖ < ε

then the dynamical system of the form

z′(t) = Fz(t) +Gu(t), z(t) ∈ Rn

is also controllable for any constant matrices F and G of appropriate di-
mensions, satisfying inequality (9).

Let us observe that Theorem 10 can be used in the investigations of the
topological properties of the set of controllable systems. It should be pointed
out, that we can consider dynamical system (1) as a point in the space of
parameters Rn(n+m).

Corollary 12. For given dimensions n and m the set of dynamical
systems, which are controllable, is open and dense in the space Rn(n+m) of
all dynamical system of the form (1 ).

Corollary 12 is of great practical importance. It states that almost all
dynamical systems of the form (1) are controllable. Therefore, controllability
is the so-called “generic” property of the dynamical system (1). Intuitively
this means that almost all dynamical systems are controllable and moreover,
that for almost all dynamical systems there exist open neighborhoods con-
taining entirely only controllable dynamical systems. Moreover, Corollary
12 enables us to define the so-called controllability margin. The controllabi-
lity margin for dynamical system (1) is defined as the distance in the space
Rn(n+m) between the given dynamical system and the nearest uncontrolla-
ble dynamical system. It is obvious that dynamical system (1), which is not
controllable, has the controllability margin equal to zero.

4. Minimum energy control. Minimum energy control problem is
strongly related to controllability problem. For controllable dynamical sys-
tem (1) there exists generally many different controls which steer the system
from a given initial state x(0) to the final desired state x1 at time t1 > 0.
Therefore, we may look for the control which is an optimal in the sense of
the following performance index.

J(u) =
t1∫

0

‖u(t)‖2
Q dt

where
‖u(t)‖2

Q = uT (t)Qu(t)
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and Q is an m × m-dimensional constant symmetric and positive definite
weighting matrix.
The performance index J(u) defines the control energy in the time in-

terval [0, t1] with the weight determined by the matrix Q. The control u,
which minimizes the performance index J(u) is called the minimum energy
control. It should be mentioned, that the performance index J(u) is a special
case of the general quadratic performance index, and hence the existence of
a minimizing control function is assured.
Therefore, the minimum energy control problem can be formulated as

follows: for a given arbitrary initial state x(0), arbitrary final state x1, and
finite time t1 > 0, find an optimal control u(t), t ∈ [0, t1], which transfers
the state x(0) to x1 at time t1 and minimizes the performance index J(u).
In order to solve the minimum control problem and to present it in

a readable compact form, let us introduce the following notation:

WQ =
t1∫

0

etABQ−1BT
(
etA
)T

dt,

WQ is constant n × n-dimensional symmetric matrix

(10) u0(t) = Q−1BT
(
e(t1−t)A

)T

WQ−1 [x1 − et1Ax(0)]

Exact analytical solution of the minimum energy control problem for
dynamical system (1) is given by the Theorem 11, which is proved under
following assumptions:
1. Dynamical system is linear,
2. There are no constraints in control,
3. There are no constraints posed on state variable x(t),
4. Dynamical system is controllable,
5. Performance index J(u) does not contain state variable x(t),
6. Performance index is a quadratic with respect to control u(t).

Theorem 11. Let u1(t), t ∈ [0, t1] be any control that transfers initial
state x(0) to final state x1 at time t1, and let u0(t), t ∈ [0, t1] be the control
defined by equality (10). Then the control u0(t) transfers the initial state
x(0) to a final state x1 at time t1 and

J(u1) ≥ J(u0).

Moreover , the minimum value of the performance index corresponding to
the optimal control u0 is given by the following formula

J(u0) = [x1 − et1Ax(0)]T WQ−1 [x1 − et1Ax(0)]
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5. Controllability of infinite dimensional systems. In the litera-
ture there are many different definitions of controllability which depend on
the type of dynamical system [1], [5], [8], [9]. A growing interest has been
developed over the past few years in problems involving signals and systems
that are defined in infinite-dimensional linear spaces. The majority of the
results in this area concern linear systems with constant coefficients.
It should be pointed out that for linear systems controllability conditions

have pure algebraic forms and are rather easily computable. These condi-
tions require verification of the rank conditions for suitable defined constant
controllability matrices.
The most popular examples of infinite-dimensional dynamical systems

are distributed parameter systems and dynamical systems with different
types of delays in state variables.

5.1. Mathematical model. In this section we study the linear infinite
dimensional control system with constant coefficients described by abstract
differential state equation

(11) x′(t) = Ax(t) +Bu(t) for t ∈ [0, T ]

with initial condition

(12) x(0) ∈ X

where the state x(0) takes values in a real infinite-dimensional separable
Hilbert space X and the values of the control y(t) are in the space U = Rm.
Let us assume that the linear, generally unbounded, operator A generates

a strongly differentiable semigroup S(t) on X for t ≥ 0 and B is a linear
bounded operator from the space Rm into X. Therefore, operator B =
[b1b2 . . . bj . . . bm] and

Bu(t) =
m∑

j=1

bjuj(t)

where

bj ∈ X for j = 1, 2, 3, . . . ,m,

u(t) = [u1(t), u2(t), . . . , uj(t), . . . , um(t)]T .

We would like to emphasize that the assumption that linear operator
B is bounded, rules out the application of our theory to boundary control
problems, because in this situation B is typically an unbounded operator.
Let Uc ⊂ U be a closed convex cone with nonempty interior and vertex

at zero. The set of admissible controls for the dynamical system (1) is Uad =
L∞([0, T ], Uc).
Then for a given admissible control u(t) there exists a unique so-called

mild solution x(t;x(0), u) of the equation (1) with initial condition (2) de-
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scribed by the integral formula

x(t;x(0), u) = S(t)x(0) +
t∫

0

S(t − s)Bu(s)ds.

5.2. Controllability conditions. For the linear abstract dynamical system
(1), it is possible to define many different concepts of controllability. In
the sequel we shall focus our attention on the so-called constrained exact
controllability in the time interval [0, T ]. In order to do that, first of all let
us introduce the notion of the attainable set at time T > 0 from the zero
initial state x(0) = 0, denoted by KT (Uc) and defined as follows

KT (Uc) = {x ∈ X : x = x(T, 0, u), u(t) ∈ Uc for a.e. t ∈ [0, T ]} ,
where x(t, 0, u) for t > 0 is the unique solution of the equation (11) with
zero initial condition and control u. Moreover, let us denote

K∞(Uc) =
⋃
t>0

Kt(Uc)

Now, using the above concepts of the attainable sets, let us recall the
familiar definitions of constrained exact controllability for dynamical sys-
tem (11).

Definition 10. Dynamical system (11) is said to be Uc-approximately
controllable in [0, T ] if the attainable set KT (Uc) is dense in the space X.

Definition 11. Dynamical system (11) is said to be Uc-approximately
controllable if the attainable set K∞(Uc) is dense in the space X.

Definition 12. Dynamical system (11) is said to be Uc-exactly control-
lable in [0, T ] if KT (Uc) = X.

Definition 13. Dynamical system (11) is said to be Uc-exactly control-
lable if K∞(Uc) = X.

Approximate controllability in [0, T ] implies approximate controllability
and similarly exact controllability in [0, T ] implies exact controllability. Mo-
reover, exact controllability always implies approximate controllability. Ho-
wever, conditions for exact controllability are rather very restrictive, there-
fore in the sequel only approximate controllability will be considered.
Let us observe, that for the finite-dimensional case i.e., when the state

space X = Rn, we may omit the words “approximate” and “exact” in the
above definitions since in this case exact controllability is equivalent to ap-
proximate controllability.
In order to obtain computable criteria for approximate controllability

we shall concentrate on dynamical systems defined in a separable infinite-
dimensional Hilbert space X with a normal, generally unbounded, operator
A with compact resolvent. Hence, the operator A has only pure discrete
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point spectrum consisting of an infinite sequence {si}, i = 1, 2, 3, . . ., of
distinct isolated eigenvalues of A, each with finite multiplicity ri. Moreover,
in the space X there is a corresponding complete orthonormal set {xij},
i = 1, 2, 3, . . ., j = 1, 2, 3, . . . , ri, of eigenvectors of the operator A. Therefore,
the semigroup S(t) is given by

S(t)x =
∞∑

i=1

esit
ri∑

j=1

〈x, xij〉X xij , for t ≥ 0 and x ∈ X,

where symbol 〈·, ·〉X denotes scalar product in Hilbert space X.
The class of operators satisfying the above assumptions arises in classical

control problems for linear distributed parameters systems.
In order to formulate computable, constrained approximate controllabi-

lity conditions let us denote Bi, i = 1, 2, 3, . . ., (ri ×m)-dimensional constant
matrices,

(13) Bi =




b1i1 b2i1 . . . bki1 . . . bmi1

b1i2 b2i2 . . . bki2 . . . bmi2

. . . . . . . . . . . . . . . . . .
b1ij b2ij . . . bkij . . . bmij

. . . . . . . . . . . . . . . . . .
b1iri

b2iri
. . . bkiri

. . . bmiri




where bkij = 〈bk, xij〉X for i = 1, 2, 3, . . ., j = 1, 2, 3, . . . , ri, k = 1, 2, 3, . . . ,m.
For the case when all the eigenvalues si are simple i.e., ri = 1, for i =

1, 2, 3, . . ., Bi are m-dimensional row vectors of the following form

(14) Bi = [〈b1, xi〉X , 〈b2, xi〉X , . . . , 〈bk, xi〉X , . . . , 〈bm, xi〉X ]

for i = 1, 2, 3, . . .

Theorem 12. Let X be a separable Hilbert space and assume that the
operator A is normal with compact resolvent. Let U = Rm and Uc be a cone
in Rm with vertex at the origin and such that int(conv Uc) �= ∅. Then the
linear dynamical system (11), (12) is approximately Uc-controllable in finite
time if and only if the following conditions hold

Biconv(Uc) = Rr for all i = 1, 2, 3, . . .

whenever si is a real eigenvalue

rankBi = ri for i = 1, 2, 3, . . .

whenever si is a complex eigenvalue.

Corollary 13. Let U = Uc = Rm. Then the linear dynamical system
(1) is approximately Rm-controllable in finite time if and only if the following
conditions hold

rankBi = ri for i = 1, 2, 3, . . .



72 J. Klamka

Corollary 14. Let U = Uc = Rm and ri = 1 for i = 1, 2, 3, . . . Then
the linear dynamical system (11) is approximately Rm-controllable in finite
time if and only if the following conditions hold

m∑
j=1

〈bj , xi〉2
L2(D) �= 0 for i = 1, 2, 3, . . .

or equivalently
Bi �= 0 for i = 1, 2, 3, . . .

It should be pointed out that the multiplicity’s ri of the eigenvalues si,
i = 1, 2, 3, . . ., are finite for every index i, however, we do not always have
sup ri < ∞. The number r = sup ri < ∞ has an important meaning in the
investigation of approximate controllability.

Corollary 15. If r = sup ri =∞ then the dynamical system (1) is not
Rm-approximately controllable.

The quite general controllability conditions given in Theorem 1 and Co-
rollaries 1 and 2, can be used to formulate controllability criteria for distribu-
ted parameter dynamical systems described by the linear partial differential
state equations.

6. Controllability of distributed parameters systems.
6.1. Mathematical model. The motivation for studying distributed para-

meters systems has been well justified in several papers and monographs.
Most of the major results concerning infinite dimensional dynamical systems
are developed for linear case. During the last two decades controllability of
distributed parameter systems have been considered in many papers and
books. The main purpose of this section is to present a compact review over
the existing controllability results mainly for linear distributed parameter
dynamical systems.
Many time-independent linear distributed parameter systems can be re-

presented in the framework of the abstract differential equation (11), with
operator A corresponding to the “spatial” differential operator appearing in
equation (11). Therefore, the general results concerning approximate con-
trollability of dynamical systems defined in infinite-dimensional linear spaces
can be used to analyze approximate controllability of distributed parame-
ter systems described by partial differential equations of parabolic type in
several space dimensions.
Let us consider the distributed parameter dynamical system defined in

a bounded domain D ⊂ Rm, with sufficiently smooth boundary S, described
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by the time-invariant partial differential equation of parabolic type of the
following form:

(15)
∂w(z, t)

∂t
=

n∑
k=1

∂2w(z, t)
∂z2

k

+ q(z)w(z, t)+
m∑

j=1

bjuj(t) for z ∈ D, t > 0

with boundary condition

(16)
∂w(z, t)

∂ν
+ p(z)w(z, t) = 0 for z ∈ S, t > 0

where ν is a vector normal at S exterior to D, and with the initial condition

(17) w(z, 0) = w0(z), z ∈ D, w0(z) ∈ L2(D).

It is assumed that function q(z) is continuous in the set D ∪ S, and
function p(z) is continuous in the set S.
The dynamical system can be connected with a linear unbounded diffe-

rential operator A : L2(D) ⊃ D(A)→ L2(D) defined as follows

(18) Aw(z) =
n∑

k=1

∂2w(z)
∂z2

k

+ q(z)w(z)

where w(z) ∈ D(A), D(A) =
{
w(z) ∈ L2(D) : Aw(z) ∈ L2(D)

}
,

(19)
∂w(z, t)

∂ν
+ p(z)w(z, t) = 0, z ∈ S.

The domain D(A) of the operator A is dense in the separable Hilbert space
L2(D). Moreover, since the set D is bounded then operator A satisfies all the
assumptions stated in subsection 5.1, i.e. has only pure discrete point spec-
trum consisting of an infinite sequence {si}, i = 1, 2, 3, . . ., of distinct iso-
lated eigenvalues of A, each with finite multiplicity ri. Moreover, in Hilbert
space L2(D) there is a corresponding complete orthonormal set {xij(z)},
i = 1, 2, 3, . . ., j = 1, 2, 3, . . . , ri, z ∈ D, of eigenvectors of the operator A.

6.2. Controllability conditions. Using the general controllability results
given in subsection 5.2 it is possible to formulate necessary and sufficient
conditions for approximate controllability of the distributed parameter sys-
tem (15).

Theorem 13. Let us assume that the operator A satisfies all the as-
sumptions stated above, and let Uc be a cone in Rm with vertex at the origin
such that int(conv Uc) �= ∅. Then the linear distributed parameter dynamical
system (15) with boundary conditions (16) is approximately Uc-controllable
in finite time if and only if the following conditions hold

Biconv (Uc) = Rr for all i = 1, 2, 3, . . . , whenever si is a real eigenvalue,

rank Bi = ri for i = 1, 2, 3, . . . , whenever si is a complex eigenvalue,
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where Bi, i = 1, 2, 3, . . ., are (ri × m)-dimensional constant matrices given
by the equalities (13) with inner product

(20) 〈bj(z), xik(z)〉L2(D) =
∫
D

bj(z)xik(z)dz

Corollary 16. Let us assume that the operator A satisfies all the as-
sumptions stated above and U = Uc = Rm. Then the distributed parameter
dynamical system (15) with boundary conditions (16) is Rm-approximately
controllable if and only if

rank Bi = ri for i = 1, 2, 3, . . . ,

where Bi, i = 1, 2, 3, . . ., are (ri × m)-dimensional constant matrices given
by the equalities (3) with inner product given by equality (20).

Corollary 17. Let U = Uc = Rm and ri = 1, for i = 1, 2, 3, . . .. Then
the linear dynamical system (15) with boundary conditions (16) is approxi-
mately Rm-controllable in finite time if and only if the following conditions
hold

m∑
j=1

〈bj , xi〉2
L2(D) �= 0 for i = 1, 2, 3, . . .

or equivalently Bi �= 0 for i = 1, 2, 3, . . . where Bi, i = 1, 2, 3, . . . are m-
dimensional constant vectors given by the equalities (14) with inner product

〈bj(z), xik(z)〉L2(D) =
∫
D

bj(z)xik(z)dz.
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Sterowalność układów dynamicznych

Streszczenie. Sterowalność, podobnie jak obserwowalność oraz stabilność, należy do pod-
stawowych pojęć matematycznej teorii układów dynamicznych. Ogólnie mówiąc, stero-
walność oznacza, że w rozpatrywanym układzie dynamicznym możliwe jest osiągnięcie
zadanego stanu końcowego przy użyciu odpowiednio dobranego sterowania dopuszczal-
nego, należącego do zadanego zbioru sterowań dopuszczalnych. Zatem sterowalność zależy
w istotny sposób zarówno od modelu matematycznego układu dynamicznego reprezento-
wanego równaniem stanu, jak i od postaci zbioru sterowań dopuszczalnych.
Pojęcie sterowalności układu dynamicznego jest wykorzystywane między innymi do

analizowania i tworzenia tak zwanych form kanonicznych układów dynamicznych oraz przy
formułowaniu twierdzeń z zakresu sterowania optymalnego. Odgrywa ono również istotną
rolę w teorii gier oraz w analizie jakościowej układów dynamicznych. Do analizowania
problematyki sterowalności układów dynamicznych wykorzystuje się metody zaczerpnięte
z różnych, często odległych od siebie dziedzin matematyki, między innymi takich jak:
algebra, analiza funkcjonalna, równania różniczkowe, teoria optymalizacji.
W artykule, wykorzystując metody algebraiczne, sformułowano kryteria badania ste-

rowalności dla liniowych, skończenie-wymiarowych, ciągłych układów dynamicznych o sta-
łych współczynnikach zarówno dla przypadku braku ograniczeń, jak i dla stożkowo ogra-
niczonych wartości sterowań. Rozpatrzono związki zachodzące pomiędzy sterowalnością
a stabilizowalnością układu dynamicznego. Zakładając sterowalność układu, podano także
analityczną postać rozwiązania zagadnienia sterowania z minimalną energią.
W drugiej części artykułu, w oparciu o spektralną teorię liniowych operatorów różnicz-

kowych oraz twierdzenia z zakresu analizy funkcjonalnej, sformułowano warunki konieczne
i wystarczające aproksymacyjnej sterowalności dla liniowych układów dynamicznych o pa-
rametrach rozłożonych.
Słowa kluczowe: liniowe układy dynamiczne, sterowalność, stabilność, układy dyna-
miczne o parametrach rozłożonych.

(wpłynęło 7 grudnia 2007 r.)


