Math 211 Homework 13

Sample Texfile

10 points for each question.

1. Let

$$\mathbf{y} = \begin{bmatrix} -1\\4\\3 \end{bmatrix} , \ \mathbf{u}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} , \ \mathbf{u}_2 = \begin{bmatrix} -1\\3\\-2 \end{bmatrix}.$$

- (a) Show that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set.
- (b) Express $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ so that $\hat{\mathbf{y}}$ is orthogonal projection of the vector \mathbf{y} onto $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$.
- (c) Find the distance of \mathbf{y} to the subspace W.
- (d) Normalize the vectors in $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{z}\}$ to get orthonormal basis.
- **2.** Let

$$\mathbf{u}_1 = \begin{bmatrix} 3\\4\\0\\1 \end{bmatrix} \quad \text{and} \ \mathbf{u}_2 = \begin{bmatrix} -4\\3\\1\\0 \end{bmatrix}.$$

- (a) Show that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set.
- (b) Express $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ so that $\hat{\mathbf{y}}$ is orthogonal projection of the vector $\mathbf{y} = \begin{bmatrix} 6\\ 3\\ -2\\ 2 \end{bmatrix}$ onto

 $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}.$

- (c) Find the distance of \mathbf{y} to the subspace W.
- (d) Find a nonzero vector \mathbf{z}_2 so that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{z}, \mathbf{z}_2}$ is an orthogonal basis for \mathbf{R}^4 .
- (e) Normalize the vectors in S to get an orthonormal basis.

3. Let

$$\mathcal{B} = \left\{ \begin{bmatrix} 3\\-4\\5 \end{bmatrix}, \begin{bmatrix} -3\\14\\-7 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}.$$

- (a) Show that \mathcal{B} is a basis for \mathbb{R}^3 .
- (b) Apply the Gram-Schmidt process to \mathcal{B} to get an orthogonal basis \mathcal{B}_1 .
- (c) Normalize the vectors in \mathcal{B}_1 to get and orthnormal basis \mathcal{B}_2 .
- (d) Let A be the matrix with the vectors in \mathcal{B} as columns, and let V be the matrix with the vectors in \mathcal{B}_2 as columns. Show that $V^T A = R$ is in upper triangular from.
- **4.** Let

$$A = \begin{bmatrix} 1 & 3 & 5\\ -1 & -3 & 1\\ 0 & 2 & 3\\ 1 & 5 & 2\\ 1 & 5 & 8 \end{bmatrix}.$$

- (a) Show that A has linearly independent columns.
- (b) Apply the Gram-Schmidt process to the columns of A to get an orthogonal basis \mathcal{B} for the column space of A.
- (c) Normalize the vectors in \mathcal{B} to get an orthonormal basis \mathcal{U} for the column basis for A.
- (d) Let Q be the matrix with the vectors in \mathcal{U} as columns. Show that $Q^T A = R$ is in upper triangular form.

Remark: We have A = QR, which is known as the QR factorization of A.

5. Repeat the procedures in Question 4 for the matrix $A = \begin{bmatrix} -2 & 3 \\ 5 & 7 \\ 2 & -2 \\ 4 & 6 \end{bmatrix}$ to find the *QR* factorization of *A*.