Math 214 – Foundations of Mathematics

Homework 3

- 1. (7 points) Let A, B, C be sets. Prove that $(A B) \cup (A C) = A (B \cap C)$. Hint: You may use any one of the following three approaches.
 - a) Write $(A B) \cup (A C) = \{x \in U : p(x)\}$, where $p(x) : x \in (A B)$ or $x \in (A C)$, and $A - (B \cap C) = \{x \in U : q(x)\}$, where $q(x) : x \in A$ and $x \notin (B \cap C)$, where U is the universal set. Show that p(x) and q(x) are logically equivalent.
 - b) Show that if $x \in (A B) \cup (A C)$, then $x \in A (B \cap C)$. Also, show that if $x \in A (B \cap C)$, then $x \in (A B) \cup (A C)$.
 - c) Use set operations such as $A X \subseteq A Y$ if $Y \subseteq X$, to argue $(A B) \cup (A C) \subseteq A (B \cap C)$ and also $A (B \cap C) \subseteq (A B) \cup (A C)$.
- 2. (7 points) Let A, B, C and D be sets. Prove that

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$

Hint: Show that (a) if $(x, y) \in (A \times B) \cap (C \times D)$, then $(x, y) \in (A \cap C) \times (B \cap D)$, and (b) if $(x, y) \in (A \cap C) \times (B \cap D)$, then $(x, y) \in (A \times B) \cap (C \times D)$.

- 3. (7 points) For the following, state whether they are true or not. Then, prove your answer.
 - (a) $\forall x \in \mathbf{R}, \exists y \in \mathbf{R}, xy = 1;$
 - (b) $\exists n \in \mathbf{N}, \exists m \in (\mathbf{N} \{1\}), nm = 1.$

Hint: If you want to prove that P is FALSE, you may try to prove $\sim P$ is TRUE.

4. (7 points) Show that for any two positive numbers a and b,

$$(a+b)\left(\frac{1}{a}+\frac{1}{b}\right) \ge 4.$$

Hint: Reduce the problem to $(a + b)^2 \ge 4ab$, and use algebra.

- 5. (7 points) Let m = 4s + 2 with $s \in \mathbb{Z}$. Show that there are no integers x, y such that $x^2 y^2 = m$.
- 6. (7 points) Prove that the product of an irrational number and a nonzero rational number is irrational.

Hint: Assume that x is irrational and y is nonzero rational. If xy is rational, then ...

7. (8 points) Let $S = \{a, b, c\} \subseteq \mathbb{Z}$. For any non-empty subset X of S, let s(X) be the sum of elements in X. Show that there are non-empty subsets A, B of S such that s(A) - s(B) is divisible by 6.

Hint: For each non-empty subset X of S, consider the remainder of s(X) divided by 6. We get remainders r_1, \ldots, r_7 . Show that two of these numbers are the same and deduce the result.

8. (Extra Credit, 8 points) Recall that for a given $S \subseteq \mathbf{R}$, the maximum element of S, denoted by max S, is the number $\alpha \in S$ such that $\alpha \geq \beta$ for all $\beta \in S$.

Let $A = \{n \in \mathbf{N} : \sqrt{n} \notin \mathbf{Q}\}$. Show that max A does not exist.

Hint: Proof by contradiction. Suppose $N \in A$ is a maximum. Show that $n = 2N^2 \in A$ satisfy n > N.