Math 214 Homework 10

Your name

Four points for each problem unless specified otherwise.

- 1. Show that if A and B are denumerable sets, then $A \cup B$ is also denumerable [Hint: Let $A = \{a_1, a_2, \ldots\}$, and let C = B - A. Then $A \cup B = A \cup C$. Consider three cases: $C = \emptyset$, C is finite, C is denumerable.]
- 2. Prove that $S = \{(a, b) : a, b \in \mathbb{N}, a \ge 2b\}$ is denumerable. [Hint: Show that $f : S \to \mathbb{N}$ defined by $f(a, b) = 2^a 3^b$ is a one-one function, and deduce that |S| = |f(S)| is denumerable. You need to argue that f(S) is not finite.]
- 3. For $k \in \mathbf{N}$, let $S_k = \{A \subseteq \mathbf{N} : |A| = k\}$. Show that $|S_2| = |\mathbf{N}|$

[Hint: Define $f: S_2 \to \mathbf{N}$ by $f(\{a, b\}) = 2^u 3^v$ with $u = \min\{a, b\}, v = \max\{a, b\}$. Then argue that $|S_2| = |f(S_2)|$ and $f(S_2)$ is denumerable as in the last question.]

- 4. (Extra 4 points) Using the definition of S_k from problem 3, show that
 - (a) for all $k \in \mathbf{N}$, S_k is denumerable.
 - (b) $S = \bigcup_{k=1}^{\infty} S_k$ is denumerable.
- 5. Let $\emptyset \neq J \subseteq \mathbf{N}$. For each $j \in J$, A_j is a non-empty countable set. Show that $\bigcup_{j \in J} A_i$ is countable.

[Hint: Let $J = \{j_1, j_2, \ldots\}$ that may be finite or denumerable. Let $A_{j_\ell} = \{a_{\ell 1}, a_{\ell 2}, \ldots,\}$ be nonempty countable (that may be finite1 or infinite). Consider the list of primes p_1, p_2, \ldots arranged in ascending order. Define $f : \bigcup_{j \in J} A_j \to \mathbf{N}$ by $f(a_{1,k}) = p_1^k$, and for i > 1 $f(a_{i,k}) = p_i^k$ if $a_{i,k} \notin \bigcup_{\ell \leq i} A_{j_\ell}$. Show that f is injective and hence $|\bigcup_{j \in J} A_j| = |B|$ with $B = \{f(x) : x \in \bigcup_{j \in J} A_j\}$. Then derive the conclusion.]

- 6. Let $A = \{(\alpha_1, \alpha_2, \alpha_3, \ldots) : \alpha_i \in \{0, 1\}, i \in \mathbb{N}\}$. Show that there is no surjection $f : \mathbb{N} \to A$.
- 7. (6 points) Determine the cardinality of the following sets (finite, denumerable, or uncountable), and justify your answers:
 - (a) the set of all open intervals with rational midpoints.
 - (b) the set of all open intervals with rational endpoints.
- 8. Show that $f:(0,1)\times(0,1)\to(0,1)$ defined by

$$f(0.a_1a_2\cdots, 0.b_1b_2\cdots) = 0.a_1b_1a_2b_2a_3b_3\cdots$$

is bijective.

9. Let $A = (0, 1) \cup (2, 3)$ and B = [1, 2]. Construct an injection from A to B, and construct an injection from B to A.