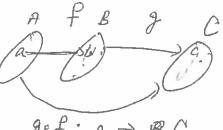
- 9. (Extra 6 points) Let $f: A \to B$ be a function, and let $f(X) = \{f(x) : x \in X\}$ for any $X \subseteq A$. Suppose $A_1, A_2 \subseteq A$.
 - (a) Prove that $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$.
 - (b) Prove that if f is injective, then $f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2)$.
 - (c) Give an example showing that $f(A_1) \cap f(A_2) \not\subseteq f(A_1 \cap A_2)$ if f is not injective.

Relevant definitions and terminology

fe AXB

- A relation $f: A \to B$ is a well-defined function if for every $a \in A$ there is a unique $b \in B$ such that $(a,b) \in f$, and we write b = f(a).
- Let $f: A \to B$ be a function.
- The function f is injective if for any $a, b \in A$ such that $a \neq b$, it follows that $f(a) \neq f(b)$ in B. The function is not injective if there are $a, b \in A$ such that $a \neq b$, but f(a) = f(b) in B.
- The function f is surjective if for every $b \in B$ there is $a \in A$ such that f(a) = b. The function is not surjective if there is $b \in B$ such that $f(a) \neq b$ for any $a \in A$.
- The function f is bijective if f is injective and surjective.
- For any function $R \subseteq A \times B$, $R^{-1} = \{(b,a) : (a,b) \in R\}$. If $f:A \to \text{is a bijective function}$ then $f^{-1} = \{(b,a) : (a,b) \in f\}$ is a function (bijection) and we write $b^{-1}(b) = a$.
- Suppose $X \subseteq A$. Then $f(X) = \{f(x) : x \in X\} \subseteq B$.
- Suppose $g: B \to C$ is a function. Then $g \circ f$: $A \to C$ is the composite function such that $g \circ f(a) = g(f(a))$.



$$g\circ f(a) = g(f(a)) = c \in C.$$

Math 214 Foundations of Mathematics Homework 8

Your name

Five points for each problem unless specified otherwise.

1. Determine the largest sets $A, B \subseteq \mathbb{R}$ such that $f: A \to B$ defined by $f(x) = \sqrt{3x-1}$ is a function. Determine whether the resulting function is injective.

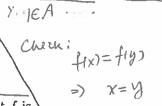
2. Consider $h: \mathbb{Z}_{16} \to \mathbb{Z}_{24}$ by h([a]) = [3a] for each $a \in \mathbb{Z}$.

(a) Prove that h is a function.

(b) Is h injective? surjective? bijective?

Note: In (a), one has to show that if
$$(a) = [b]$$
 in \mathbb{Z}_{16} , then $f(a) = f(b)$ in \mathbb{Z}_{24} .

[Note: In (a), one has to show that if (a) = [b] in \mathbb{Z}_{16} then f(a) = f(b) in \mathbb{Z}_{24} .] 3. Let $f: \mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$ where, for $(a,b) \in \mathbf{R} \times \mathbf{R}$, f(a,b) = (2a+7,3b-3). Prove that f is



a bijective function and find f^{-1} .

[Note: To prove f is well-defined, one has to show that every $(x,y) \in \mathbb{R} \times \mathbb{R}$, f(x,y) = (u,v) is an element in $\mathbb{R} \times \mathbb{R}$. To prove that f is surjective, one has to show that for every $(u, v) \in \mathbb{R} \times \mathbb{R}$ there is $(x,y) \in \mathbf{R} \times \mathbf{R}$ such that f(x,y) = (u,v). In such a way, $f^{-1}(u,v) = (x,y)$.

4. Define $f: \mathbb{N} \to \mathbb{Z}$ by $f(n) = \begin{cases} n/2 & \text{if } n \text{ is even,} \\ (1-n)/2 & \text{if } n \text{ is odd.} \end{cases}$

Show that f is a well-defined bijective

Note: To show that f is well-defined, one has to show that for every $n \in \mathbb{N}$ $f(n) \in \mathbb{Z}$. You may need to consider two cases: n is even, n is odd. To prove that f is injective, one has to show that $f(n_1) = f(n_2)$ then $n_1 = n_2$. You may need to consider four cases: n_1 is even or odd, n_2 is even or odd. To prove that f is surjective, one has to show that for every $z \in \mathbb{Z}$, one can find $n \in \mathbb{N}$ such that f(n) = z. You need to consider two cases: z > 0 and $z \le 0$.

5. Suppose A is a non-empty set. Determine the functions $f:A\to A$ that are also equivalence relations.

[Hint: Try the cases when $A = \{1, 2\}$ and $A = \{1, 2, 3\}$, and determine the general result.]

- 6. Let A, B and C be nonempty sets and let f, g and h be functions such that $f: A \to B, g$: $B \to C$ and $h: B \to C$. For each of the following prove or disprove:
 - (a) if $g \circ f = h \circ f$, then g = h.
 - (b) if f is surjective and $g \circ f = h \circ f$, then g = h.

[Hint: For (a), consider $f: \{a\} \rightarrow \{a,b\}$, and $g: \{a,b\} \rightarrow \{a,b\}$.]

- 7. For nonempty sets A, B, C, let $f: A \to B$ and $g: B \to C$ be functions.
 - (a) Prove that if $g \circ f$ is injective, then f is injective.
 - (b) Disprove that if $g \circ f$ is injective, then g is injective.
- 8. For nonempty sets A and B and functions $f: A \to B$ and $g: B \to A$ suppose that $g \circ f = i_A$, the identity function on A.
 - (a) (4 points) Show that f is injective and g is surjective.
 - (b) (2 points) Show that f is not necessarily surjective.
 - (c) (2 points) Show that g is not necessarily injective.