Math 214 Foundations of Higher Mathematics C.K. Li

§8.5/8.6 Congruence Modulo n

We study properties of the partition $\mathbf{Z}_n = \{[0], [1], \dots, [n-1]\}$ of the set \mathbf{Z} .

Congruence Modulo n

Recall that for $n \in \mathbf{N}$ with n > 1, we have $\mathbf{Z}_n = \{[0], [1], \dots, [n-1]\}$ with

$$[k] = \{nx + k : x \in \mathbf{Z}\}.$$

Two integers x, y lies in the same class if x - y is divisible by n, and we write $x \equiv y \pmod{n}$.

Theorem Define a relation R on integers by xRy if $x \equiv y \pmod{n}$. Then

- (a) For any $x \in \mathbf{Z}$, xRx. (Reflexive)
- (b) For any $x, y \in \mathbf{Z}$, if xRy then yRx. (Symmetric)
- (c) For any $x, y, z \in \mathbf{Z}$, if xRy, yRz, then xRz. (Transitive).

We say that R is an equivalence relation on **Z**. Note that $[x_1] = [x_2]$ if $x_1 R x_2$.

Theorem Let n > 1 be an integer. For any $x, y \in \mathbf{Z}$, the following operations are well defined:

$$[x] + [y] = [x + y]$$
 and $[x][y] = [xy]$.

Applications

- (1) Find the last digit of 11^{2016} .
- (2.a) Show that $10^{2n} 1$ is divisible by 11 for any $n \in \mathbf{N}$.
- (2.b) Show that $10^{2n+1} + 1$ is divisible by 11 for any $n \in \mathbb{N}$.
- (2.c) Show that a number is divisible by 11 if the sum of its digits in even positions is the same as the sum of its digits in odd positions.

More about relations

Definition A relation R on a set S is an equivalence relation if it is

(R) reflexive: aRa for every $a \in S$. (S) symmetric: If aRb, then bRa.

(T) transitive: If aRb and bRc, then aRc.

Examples

- (1) Consider all relations on $\{1, 2\}$.
- (2) Consider the relation on **Z** such that xRy if $x^2 = y^2$. Show that R is an equivalence relation on **Z**.
- (3) Consider the relation on **Z** such that xRy if x > y. Is R reflexive / symmetric / transitive?

$\S 8.1 - 8.4$

More generally, one can define a relation between two sets.

Definition, notation, and terminology Let A and B be sets. A relation R from A to B is a subset of $A \times B$. We write xRy if $(x,y) \in R$.

The **domain** of R is $\mathrm{dom} R = \{x \in A : (x,y) \in R \text{ for some } y \in B\}.$

The **range** of R is $\operatorname{ran} R = \{y \in B : (x,y) \in R \text{ for some } x \in A\}.$

Examples Relations from $A = \{a, b, c\}$ to $B = \{a, b, c, c\}$.

Examples (a) Relations from ${\bf Z}$ to $\{0,1\}$. (b) Relations from ${\bf R}$ to ${\bf Z}$.

Recall If R is a relation from S to S, we say that R is a relation on A.

A relation R on A is reflexive if ...; it is symmetric if ...; it is transitive if ...; it is an equivalence relation if ...

Examples (a) $A = \{1, \dots, n\}$ and R is ...;

- (b) $A = \mathbf{R}$ and R is ...;
- (c) $A = \mathbf{R} \times \mathbf{R}$ and R is

Theorem Let R be an equivalence relation on a non-empty set A, and let $[a] = \{x \in A : aRx\}$ be the equivalence class of $a \in A$.

- (a) For $a, b \in A$, either aRb and [a] = [b] or $[a] \cap [b] = \emptyset$.
- (b) The set $P = \{[a] : a \in A\}$ of equivalence classes forms a partition of A.

Theorem Let $P = \{A_j : j \in J\}$ be a partition of a non-empty set A. Define R on A by xRy if $x, y \in A_j$ for some $j \in J$. Then P is the set of equivalence classes of A under R.