Feb 15, 2012 Summary

<u>Method:</u> Obviously, when the transition matrix is diagonalizable, we can always use partial fraction decomposition to determine power series

expansion of
$$(I-zP)^{-1}$$
. In general, we write $UPU^{-1} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$. Observed

that if the first row of U is normalized to π , then the first column of U^{-1} must be normalized to **1** since $UU^{-1} = I$ and hence $(UV)_{11} = u_1v_1 = \pi v_1 = I$. (Markov Chain and Random Walks on Graph)

Denote
$$\Lambda = \begin{pmatrix} 1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}, P^t = U^{-1} \begin{pmatrix} 1 & & & \\ & \lambda_2^t & & \\ & & \ddots & \\ & & & & \lambda_2^t \end{pmatrix} U$$
$$\begin{pmatrix} v_{11}u_1 \end{pmatrix} \begin{pmatrix} \pi \end{pmatrix}$$

 $\xrightarrow{t \to \infty} \begin{vmatrix} v_{12}u_1 \\ \vdots \\ v_{1n}u_1 \end{vmatrix} = \begin{vmatrix} \pi \\ \vdots \\ \pi \end{vmatrix}$, since *P* has the unique largest eigenvalue $\lambda_1 = l$ by

Perron-Frobenius Theorem. One may consider $1 \ge |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$, generally, given an initial distribution q_0 , $q^{(t)} = qP^t = \pi + \sum_{i=2}^n q_i^* \lambda_i^t u_i$, where

$$q_i = \frac{qu_i^T}{\|u_i\|^2}$$
, u_i 's are just the eigenvalue basis for *P*.

Numerical example:

Diagonalize
$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix}$$
, $\begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix}^{-1} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} & 0 \\ 0 & 1 \end{pmatrix}$

$$\lim_{n \to \infty} P^{n} = \lim_{n \to \infty} {\binom{2}{-3}} 1 \binom{(-\frac{1}{4})^{n}}{0} \binom{2}{-3} \binom{$$

Suggestion: Consider the following three schemes.

- 1. Simply write $P = \sum_{i=1}^{n} \lambda_i u_i v_i$, where u_i , v_i 's are the column and row vectors of U^{-1} and U respectively.
- 2. Use the method like this: calculate $(I-zP)^{-1}$ and write it in the form of $\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \gamma_{i} z^{i} \right) B_{j}.$
- 3. Study Cayley-Hamilton Theorem, and try to figure out if we can represent the power of P in terms of some lower degree matrix polynomials.