
Feb 15, 2012 Summary 

Method: Obviously, when the transition matrix is diagonalizable, we can 

always use partial fraction decomposition to determine power series 

expansion of (I-zP)
-1

. In general, we write UPU
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=
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. Observed 

that if the first row of U is normalized to  , then the first column of U
-1

 

must be normalized to 1 since UU
-1

=I and hence (UV)11=u1v1=  v1=1. 

(Markov Chain and Random Walks on Graph) 
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, since P has the unique largest eigenvalue 1 =1 by 

Perron-Frobenius Theorem. One may consider 2 31 n      , 

generally, given an initial distribution q0, q
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 , ui’s are just the eigenvalue basis for P. 

Numerical example: 

Diagonalize P =
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Suggestion: Consider the following three schemes. 

1. Simply write
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 , where ui, vi’s are the column and row vectors 

of U
-1

 and U respectively. 

2. Use the method like this: calculate (I-zP)
-1

 and write it in the form of 

1 1

n n
i

i j

j i

z B
 

 
 
 

  . 

3. Study Cayley-Hamilton Theorem, and try to figure out if we can 

represent the power of P in terms of some lower degree matrix 

polynomials. 


