## Feb 15, 2012 Summary

Method: Obviously, when the transition matrix is diagonalizable, we can always use partial fraction decomposition to determine power series expansion of $(I-z P)^{-1}$. In general, we write $U P U^{-1}=\left(\begin{array}{lll}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}\end{array}\right)$. Observed that if the first row of $U$ is normalized to $\pi$, then the first column of $U^{-1}$ must be normalized to $\mathbf{1}$ since $U U^{-1}=I$ and hence $(U V)_{I l}=u_{l} v_{l}=\pi v_{l}=1$. (Markov Chain and Random Walks on Graph)

Denote $\Lambda=\left(\begin{array}{llll}1 & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right), P^{t}=U^{l}\left(\begin{array}{llll}1 & & & \\ & \lambda_{2}^{t} & & \\ & & \ddots & \\ & & & \lambda_{2}^{t}\end{array}\right) U$
$\xrightarrow{t \rightarrow \infty}\left(\begin{array}{c}v_{11} u_{1} \\ v_{12} u_{1} \\ \vdots \\ v_{1 n} u_{1}\end{array}\right)=\left(\begin{array}{c}\pi \\ \pi \\ \vdots \\ \pi\end{array}\right)$, since $P$ has the unique largest eigenvalue $\lambda_{1}=l$ by Perron-Frobenius Theorem. One may consider $1 \geq \neq\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n}\right|$, generally, given an initial distribution $q_{0}, q^{(t)}=q P^{t}=\pi+\sum_{i=2}^{n} q_{i} \lambda_{i}^{t} u_{i}$, where $q_{i}^{\prime}=\frac{q u_{i}^{T}}{\left\|u_{i}\right\|^{2}}, u_{i}^{\prime}$ 's are just the eigenvalue basis for $P$.

Numerical example:
Diagonalize $P=\left(\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4}\end{array}\right),\left(\begin{array}{cc}2 & 1 \\ -3 & 1\end{array}\right)^{-1}\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4}\end{array}\right)\left(\begin{array}{cc}2 & 1 \\ -3 & 1\end{array}\right)=\left(\begin{array}{cc}-\frac{1}{4} & 0 \\ 0 & 1\end{array}\right)$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P^{n}=\lim _{n \rightarrow \infty}\left(\begin{array}{cc}
2 & 1 \\
-3 & 1
\end{array}\right)\left(\begin{array}{cc}
\left(-\frac{1}{4}\right)^{n} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
-3 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{3}{5} & \frac{2}{5} \\
\frac{3}{5} & \frac{2}{5}
\end{array}\right) \\
& (I-z P)^{-1}=\left(1+z+z^{2}+z^{3}+\cdots\right)\left(\begin{array}{cc}
\frac{3}{5} & \frac{2}{5} \\
\frac{3}{5} & \frac{2}{5}
\end{array}\right)+\left[1-\frac{z}{4}+\left(\frac{z}{4}\right)^{2}-\left(\frac{z}{4}\right)^{3}+\cdots\right]\left(\begin{array}{cc}
\frac{2}{5} & -\frac{2}{5} \\
-\frac{3}{5} & \frac{3}{5}
\end{array}\right)
\end{aligned}
$$

Suggestion: Consider the following three schemes.

1. Simply write $P=\sum_{i=1}^{n} \lambda_{i} u_{i} v_{i}$, where $u_{i}, v_{i}$ 's are the column and row vectors of $U^{-1}$ and $U$ respectively.
2. Use the method like this: calculate $(I-z P)^{-1}$ and write it in the form of $\sum_{j=1}^{n}\left(\sum_{i=1}^{n} \gamma_{i} z^{i}\right) B_{j}$.
3. Study Cayley-Hamilton Theorem, and try to figure out if we can represent the power of $P$ in terms of some lower degree matrix polynomials.
