Latent semantic indexing

Traditional search

Term-document matrix

$$
\begin{gathered}
\mathbf{d}_{j} \\
\mathbf{t}_{i}^{T} \rightarrow\left[\begin{array}{ccc}
x_{1,1} & \ldots & x_{1, n} \\
\vdots & \ddots & \vdots \\
x_{m, 1} & \ldots & x_{m, n}
\end{array}\right]
\end{gathered}
$$

Now a row in this matrix will be a vector corresponding to a term, giving its relation to each document:

$$
\mathbf{t}_{i}^{T}=\left[\begin{array}{lll}
x_{i, 1} & \ldots & x_{i, n}
\end{array}\right]
$$

Likewise, a column in this matrix will be a vector corresponding to a document, giving its relation to each term:

$$
\mathbf{d}_{j}=\left[\begin{array}{c}
x_{1, j} \\
\vdots \\
x_{m, j}
\end{array}\right]
$$

- Let A be the term-document matrix. We then form a query vector and compare it with the document vector.
- Matrix multiplication of Transpose of A and query vector gives what we want.
- Multiplication of (n *m)matrix and ($\mathrm{m} * 1$) query vector gives ($n * 1$) result vector.

Use of cosine angle

- Cosine(theta)=<d,q>/|d||q|
- Note that it involves division by the length (euclidean norm)
- Near 1 means the document and query vector are close to each other while near 0 means the are not close.
- We usually use cosine angle to compare the two document vector (or query vector) about how close they are.
- The reason of using cosine angle is to eliminate the effect of :
1: Too many terms in the document vector (e.g. encyclopedia).

2: Too many terms in the query vector.

LSI

Now SVD comes in:

We keep the first t singular values only. Note that U and V are not square matrix anymore; while "singular matrix" becomes square matrix.

- The term vectors are the rows of $U_{-}(t)$ while the column vectors are now the columns of transpose of V_(t).
- They are pseudo are they are represented in lower dimension space than before and they are shorter.

Computation of pseudo vectors:

$$
\begin{aligned}
\hat{\mathbf{d}}_{j} & =\Sigma_{k}^{-1} U_{k}^{T} \mathbf{d}_{j} \\
\hat{\mathbf{q}} & =\Sigma_{k}^{-1} U_{k}^{T} \mathbf{q}
\end{aligned}
$$

Effect of dimension reduction

```
{(car), (truck), (flower)} --> {(1.3452 * car + 0.2828 * truck), (flower)}
```

2 terms are combined in the document vector and query vector.

Example

- The query is gold silver truck and the "collection" consists of just three "documents":
- d1: Shipment of gold damaged in a fire.
- d2: Delivery of silver arrived in a silver truck.
- d3: Shipment of gold arrived in a truck.

SVD results

$$
\begin{aligned}
& \mathbf{U}=\left[\begin{array}{rrr}
-0.4201 & 0.0748 & -0.0460 \\
-0.2995 & -0.2001 & 0.4078 \\
-0.1206 & 0.2749 & -0.4538 \\
-0.1576 & -0.3046 & -0.2006 \\
-0.1206 & 0.7449 & -0.4538 \\
-0.2626 & 0.3794 & 0.1547 \\
-0.4201 & 0.0748 & -0.0460 \\
-0.4201 & 0.0748 & -0.0460 \\
-0.2626 & 0.3794 & 0.1547 \\
-0.3151 & -0.6093 & -0.4013 \\
-0.2995 & -0.2001 & 0.4078
\end{array}\right] \quad \mathbf{S}=\left[\begin{array}{llll}
4.0989 & 0.00000 & 0.0000 \\
0.00000 & 2.3616 & 0.0000 \\
0.0000 & 0.00000 & 1.2737
\end{array}\right] \\
& \mathbf{V}=\left[\begin{array}{ccc}
-0.4945 & 0.6492-0.5780 \\
-0.6458 & -0.7194 & -0.2556 \\
-0.5817 & 0.2469 & 0.7750
\end{array}\right] \quad \mathbf{v}^{\mathbf{T}}=\left[\begin{array}{lll}
-0.4945 & -0.6458 & -0.5817 \\
0.6492 & -0.7194 & 0.2469 \\
-0.5780 & -0.2556 & 0.7750
\end{array}\right]
\end{aligned}
$$

Dimensionality reduction (figure 4)

$$
\begin{aligned}
& \mathbf{U} \approx \mathbf{U}_{\mathbf{k}}=\left[\begin{array}{rr}
-0.4201 & 0.0748 \\
-0.2995 & -0.2001 \\
-0.1206 & 0.2749 \\
-0.1576 & -0.3046 \\
-0.1206 & 0.2749 \\
-0.2626 & 0.3794 \\
-0.4201 & 0.0748 \\
-0.4201 & 0.0748 \\
-0.2626 & 0.3794 \\
-0.3151 & -0.6093 \\
-0.2995 & -0.2001
\end{array}\right] \quad \mathbf{S} \approx \mathbf{S}_{\mathbf{k}}=\left[\begin{array}{ll}
4.0989 & 0.0000 \\
0.0000 & 2.3616
\end{array}\right] \\
& \mathbf{V} \approx \mathbf{V}_{\mathbf{k}}=\left[\begin{array}{rr}
-0.4945 & 0.6492 \\
-0.6458 & -0.7194 \\
-0.5817 & 0.2469
\end{array}\right] \quad \mathbf{V}^{\mathbf{\top}} \approx \mathbf{V}_{\mathbf{k}}^{\mathbf{\top}}=\left[\begin{array}{lll}
-0.4945 & -0.6458 & -0.5817 \\
0.6492 & -0.7194 & 0.2469
\end{array}\right]
\end{aligned}
$$

Pseudo query vector:

Reduced query

$\mathbf{q}=\mathbf{q}^{\mathbf{T}} \mathbf{U}_{\mathbf{k}}^{\mathbf{- \mathbf { - 1 }}}$
$\mathbf{q}=[00000100011]\left[\begin{array}{rr}-0.4201 & 0.0748 \\ -0.02995 & -0.2001 \\ -0.1206 & 0.2749 \\ -0.1576 & -0.3046 \\ -0.1206 & 0.2749 \\ -0.2626 & 0.3794 \\ -0.4201 & 0.0748 \\ -0.4201 & 0.0748 \\ -0.2626 & 0.3794 \\ -0.3151 & -0.6093 \\ -0.2995 & -0.2001\end{array}\right]\left[\begin{array}{cc}\frac{1}{4.0989} & 0.0000 \\ 0.0000 & \frac{1}{2.3616}\end{array}\right]$
$\mathbf{q}=\left[\begin{array}{ll}-0.2140 & -0.1821\end{array}\right]$

Pseudo document vector:

d1(-0.4945, 0.6492)
d2(-0.6458, -0.7194) d3(-0.5817, 0.2469)

Cosine similarities in reduced space

$$
\begin{aligned}
& \operatorname{sim}(\mathbf{q}, \mathbf{d})=\frac{\mathbf{q} \cdot \mathbf{d}}{|\mathbf{q}||\mathbf{d}|} \\
& \operatorname{sim}\left(\mathbf{q}, \mathbf{d}_{\mathbf{1}}\right)=\frac{(-0.2140)(-0.4945)+(-0.1821)(0.6492)}{\sqrt{(-0.2140)^{2}+(-0.1821)^{2}} \sqrt{(-0.4945)^{2}+(0.6492)^{2}}}=-0.0541 \\
& \operatorname{sim}\left(\mathbf{q}, \mathbf{d}_{2}\right)=\frac{(-0.2140)(-0.6458)+(-0.1821)(-0.7194)}{\sqrt{(-0.2140)^{2}+(-0.1821)^{2}} \sqrt{(-0.6458)^{2}+(-0.7194)^{2}}}=0.9910 \\
& \operatorname{sim}\left(\mathbf{q}, \mathbf{d}_{3}\right)=\frac{(-0.2140)(-0.5817)+(-0.1821)(0.2469)}{\sqrt{(-0.2140)^{2}+(-0.1821)^{2}} \sqrt{(-0.5817)^{2}+(0.2469)^{2}}}=0.4478
\end{aligned}
$$

Ranking documents in descending order

$$
d_{2}>d_{2}>d_{1}
$$

Advantages of LSI

- Traditional method cannot effectively find documents on the same topic but with synonyms. LSI is able to do that.

Drawback of LSI

While LSI can do this:
\{(car), (truck), (flower) $\}$--> $\{(1.3452$ * car + 0.2828 * truck), (flower) where (1.3452 * car + 0.2828 * truck) component could be interpreted as "vehicle".
However:
It is very likely that cases close to\{(car), (bottle), (flower) $\}$--> \{(1.3452 * car + 0.2828 * bottle), (flower) $\}$ will also occur.

Reference

- wWW.miislita.com
- Barbara Rosario, Latent Semantic Indexing: An overview(2000)
- Wikipedia: Latent Semantic analysis

