Latent semantic indexing



Traditional
search



Term-document matrix
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Mow a row in this matrix will be a vector corresponding to a term, giving its relation to each document:

T
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Likewise, a column in this matrix will be a vector corresponding to a document, giving its relation to each term:
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e Let A be the term-document matrix. We
then form a query vector and compare it
with the document vector.

e Matrix multiplication of Transpose of A and
guery vector gives what we want.

e Multiplication of (n*m)matrix and (m*1)
guery vector gives (n*1) result vector.



Use of cosine angle

» Cosine(theta)=<d,qg>/|d||q|
* Note that it involves division by the length
(euclidean norm)

 Near 1 means the document and query
vector are close to each other while near O
means the are not close.



* \We usually use cosine angle to compare
the two document vector (or query vector)
about how close they are.

 The reason of using cosine angle Is to
eliminate the effect of :

1: Too many terms in the document vector
(e.g. encyclopedia).

2. Too many terms in the query vector.




LS|



Now SVD comes In:
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We keep the first t singular values only. Note that U and V are not
square matrix anymore; while “singular matrix” becomes square
matrix.



 The term vectors are the rows of U_(t)
while the column vectors are now the
columns of transpose of V_ ().

 They are pseudo are they are represented
In lower dimension space than before and
they are shorter.



Computation of pseudo vectors:



Effect of dimension reduction

{{car), (truck), (flower)} —= {{1.3452 * car + 0.2828 * truck), (flower)}

2 terms are combined in the document vector and query vector.



Example

The query is gold silver truck and the "collection” consists of just
three "documents™:

d1: Shipment of gold damaged in a fire.
d2: Delivery of silver arrived in a silver truck.
d3: Shipment of gold arrived in a truck.
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SVD results
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Dimensionality reduction (fiqure 4)
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~—d=du,s,

pseudo

sim(q, d) = sim(q"U,S,", d'U,S, ")



Pseudo query vector:

Reduced query
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Pseudo document vector:

d1(-0.4945, 0.6492)
d2(-0.6458, -0.7194)
d3(-0.5817, 0.2469)



Cosine similarities in reduced space
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Ranking documents in descending order

d, >=d, = d,




Advantages of LSI

* Traditional method cannot effectively find
documents on the same topic but with
synonyms. LSl is able to do that.



Drawback of LS|

While LSI can do this:

{(car), (truck), (flower)} --> {(1.3452 * car + 0.2828 *
truck), (flower)} where (1.3452 * car + 0.2828 *
truck) component could be interpreted as "vehicle".

However:

It is very likely that cases close to{(car), (bottle),

(flower)} --> {(1.3452 * car + 0.2828 * bottle),
(flower)} will also occur.



Reference

o WWW.MIISlita.com

e Barbara Rosario, Latent Semantic
Indexing: An overview(2000)

« Wikipedia: Latent Semantic analysis
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