Latent semantic indexing

Traditional
search

Term-document matrix

t?—r

Mow a row in this matrix will be a vector corresponding to a term, giving its relation to each document:

T
L, = [Iﬁ_ ILﬂ_]

Likewise, a column in this matrix will be a vector corresponding to a document, giving its relation to each term:

T1,5

I*m, i

e Let A be the term-document matrix. We
then form a query vector and compare it
with the document vector.

e Matrix multiplication of Transpose of A and
guery vector gives what we want.

e Multiplication of (n*m)matrix and (m*1)
guery vector gives (n*1) result vector.

Use of cosine angle

» Cosine(theta)=<d,qg>/|d||q|
* Note that it involves division by the length
(euclidean norm)

 Near 1 means the document and query
vector are close to each other while near O
means the are not close.

* \We usually use cosine angle to compare
the two document vector (or query vector)
about how close they are.

 The reason of using cosine angle Is to
eliminate the effect of :

1: Too many terms in the document vector
(e.g. encyclopedia).

2. Too many terms in the query vector.

LS|

Now SVD comes In:

L1 Iin

oy ... 0 [

We keep the first t singular values only. Note that U and V are not
square matrix anymore; while “singular matrix” becomes square
matrix.

 The term vectors are the rows of U_(t)
while the column vectors are now the
columns of transpose of V_ ().

 They are pseudo are they are represented
In lower dimension space than before and
they are shorter.

Computation of pseudo vectors:

Effect of dimension reduction

{{car), (truck), (flower)} —= {{1.3452 * car + 0.2828 * truck), (flower)}

2 terms are combined in the document vector and query vector.

Example

The query is gold silver truck and the "collection” consists of just
three "documents™:

d1: Shipment of gold damaged in a fire.
d2: Delivery of silver arrived in a silver truck.
d3: Shipment of gold arrived in a truck.

Terms

!

¥

arrived
damaged
delivery
fire

gold

In

of
shipment
silver
truck

(w1
-

OO0 = = a0 = 0 =

(X
M

—\MD.—'&—\.GG.—\D.—'&.—\. %

(X
L

e

== = === OO0 = =

— o000 000 0 = 2O

I
l

SVD results

-0.4201
-0.2995
-0.1206
-0.157b
-0.1206
-0.2626
-0.4201
-0.4201
-0.2626
-0.3151
-0.2935

0.0748

-0.2001

0.2749

-0.3046

0.2749
0.3794
0.0748
0.0748
0.3794

-0.6093
-0.2001

-0.0460

0.4078

-0.4538
-0.2006
-0.4536

0.1547

-0.0460
-0.0460

0.1547

-0.4013

0.4078

[4.0989
0.0000

0.0000

0.0000
2.3616
0.0000

0.0000
0.0000
1.2737

05817 |
0.2469
0.7750

-0.6458
-0.7194
-0.2556

04945
0.6492
05780

.0.4345 0.6492 -0.5780 |
10,6458 -0.7194 -0.2556
05817 0.2469 0.7750

Dimensionality reduction (fiqure 4)

04201 00748 k=2
.0.2995 -0.2001
01206 0.2749
01576 -0.3046 40969 0.0000
Uxuy = | 01208 02749 S ~ §, = |00000 23516
k 0.2626 0.3794 k | |

-0.4201 0.0748
-0.4201 00748

02626 0.3794
-0.3151 -0.6093
| -0.29%5 -0.2001 |
-0.4945 06492 T T 0.4945 -06458 -05817
V = ‘u‘k = | -0.6458 -0.7194 V' = 'u'k = | 06492 -0.7194 0.2469

-0.5617 0.2469

~—d=du,s,

pseudo

sim(q, d) = sim(q"U,S,", d'U,S, ")

Pseudo query vector:

Reduced query

T 1
q "ksk

[ooooo1o0011]

q

q = [02140 01821

-0.4201
-0.2995
-0.1206
-0.1576
-0.1206
-0.2626
-0.4201
-0.4201
-0.2626
-0.3151

| -0.2995

-0.2001

-0.304b

-0.6093
-0.2001_

0.0748 |
0.2749

0.2749
0.3794
0.0748
0.0748
0.3794

40989 0.0000
1
0.0000 2.3616

Pseudo document vector:

d1(-0.4945, 0.6492)
d2(-0.6458, -0.7194)
d3(-0.5817, 0.2469)

Cosine similarities in reduced space

qed
lqlld]

(-0.2140) (-0.4945) + (-0.1821) (0.6492)
simiq. 1} = = -0.0541

c0.21am2+ 0.1821)2 v/ (0.4345)2+ (06492)2

simiq. d) =

(0.2140) (-0.6458) + (-0.1821) (-0.7194)
sim{q, d 5} = = 0.9910

V’,(-D_214n12+ (—D.TBEUE ‘\/[—IZI.54582|2+ I:—III.?‘IE‘fi?l2

(-0.2140) (-0.5817) + (-0.1821) { 0.2469)
sim({q, d 3) =

0.4478

w/(-n.zmnjz+ 0.1821)° \/{-D.EE1?]E+ (0.2459)2

Ranking documents in descending order

d, >=d, = d,

Advantages of LSI

* Traditional method cannot effectively find
documents on the same topic but with
synonyms. LSl is able to do that.

Drawback of LS|

While LSI can do this:

{(car), (truck), (flower)} --> {(1.3452 * car + 0.2828 *
truck), (flower)} where (1.3452 * car + 0.2828 *
truck) component could be interpreted as "vehicle".

However:

It is very likely that cases close to{(car), (bottle),

(flower)} --> {(1.3452 * car + 0.2828 * bottle),
(flower)} will also occur.

Reference

o WWW.MIISlita.com

e Barbara Rosario, Latent Semantic
Indexing: An overview(2000)

« Wikipedia: Latent Semantic analysis

	Slide Number 1
	Slide Number 2
	Term-document matrix
	Slide Number 4
	Use of cosine angle
	Slide Number 6
	Slide Number 7
	Now SVD comes in:
	Slide Number 9
	Computation of pseudo vectors:
	Effect of dimension reduction
	Example
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Pseudo query vector:
	Pseudo document vector:
	Slide Number 19
	Advantages of LSI
	 Drawback of LSI
	Reference

