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Abstract 

In this project, we present theory about minimal polynomials of matrices. Both 

theoretical notations and applications in various fields will be discussed. We will start 

with the general properties of minimal polynomials, and apply the techniques to 

compute the power of matrices and the stationary distribution of a finite Markov Chain. 

 

1. Introduction: Background 

 

 Matrix Theory (or Linear Algebra) sometimes is regarded as one of the two most 

basic concepts in mathematics (the other is Calculus of course). Matrices are widely 

used in both science and engineering. Matrix models are often used to represent different 

systems, simulate various processes and compute final tendency of frameworks. It is 

well-known that minimal polynomials are treated as one of the most pivotal concepts to 

reduce the power of matrices, which sometimes represent the long-term variation 

tendency. They probably have been full-understood and been transferred to not only 

mathematics applications, but also statistics, economics, dynamic systems, so on and so 

forth. Researchers have studied minimal polynomials for a long time, different 

measurements and methods have been developed to calculate the power of matrices, 

which is used to describe the flow direction of a particular system or process while the 

stationary distribution, which is the limiting behaviour of a stochastic process, 

sometimes could be fully-translated to be an eigenvalue-eigenvector problem. Therefore, 

we are aiming at figuring out the underlying foundation of these methods and make a 

connection and comparison among different sections. 

 

2. Power of Matrices 

 

2.1 Characteristic Polynomial and Minimal Polynomial of a Matrix 

2.1.1 Basic Observations 

First note that the analysis for functions could be easily extended to matrices. 

Generally speaking, for analytic functions, if S is the set of all matrices T such that 

0

n

n

n

T




  converges, then we define f to be 
0

( ) n

n

n

f T T




  for all T belongs to S and we 

can see f is a matrix-valued function. As for a square matrix, there must exist some 
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polynomials ( )f   such that when we plug in the matrix A, ( ) 0f A  . One famous such 

polynomial is called characteristic polynomial of a matrix A, which is denoted as 

( ) det( )Ap z zI A  . The result ( ) 0Ap A  , one should recall, is the famous Cayley–

Hamilton Theorem, which we will discuss in the latter section. On the other hand, 

among all such polynomials, there must one kind of polynomial with the lowest degree 

μ, and when we divide such polynomials by the coefficient of 
 , the result must be 

identical. Otherwise, if we obtain 1( )f   and 2 ( )f   which 1 2( ) ( )f f  , then 

1

1 2

0

( ) ( ) i

i

i

f f


   




  , substitute A, we will get 
1

1 2

0

( ) ( ) 0i

i

i

f A f A A







   , which 

contradicts with the lowest degree assumption. Therefore, we denote such lowest degree 

polynomials to be the minimal polynomial of a matrix and write as m(A). 

 

2.1.2 Existence of Minimal Polynomials 

To be a minimal polynomial of a matrix, there are three conditions must be 

satisfied, namely, (1) p(A)=0 (2) p has the lowest degree which means if m’ is another 

nonzero polynomial such that m’ (A)=0, deg(m’)≥deg(m). (3) p is monic. 

As a sequence of matrices, we denote m to be the smallest integer such that I, A, 

…, A
m
 are linearly dependent. By saying linearly dependent, we mean that there exist 

some coefficients 1 , 2 , … , m  which are not all equal to zero, and 
1

0
m

i

i

i

A


 . 

Because of m is the minimal integer defined as above, 0m  , then 
1

1

0
m

m i

m i

i

A A 




   

could be rewritten as 
1

1

0
m

m i

i

i

A A




   where i
i

m





  for i=1, 2, …, m-1. Let 

1

1

( )
m

m i

A i

i

p    




  , observed that ( ) 0Ap A  , hence p is the minimal polynomial of A. 

 

2.1.3 Uniqueness of Minimal Polynomials 

 If p and p’ are both minimal polynomials of A, we divide p’ by p, use the 

Euclidean Algorithm for Polynomials, we will get '( ) ( ) ( ) ( )p p q r     , substitute 

A, '( ) ( ) ( ) ( )p A p A q A r A   which means ( ) 0r A  . On the other hand, deg(r)＜deg(p), 

hence r=0 according to the lowest degree assumption. Therefore, '( ) ( ) ( )p r p r q r . 
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Moreover, p’ and p must have the same degree, which means ( )q   is just a constant 

polynomial and equal to 1 according to the monic condition. That means p’=p, which 

proves the uniqueness of minimal polynomials. 

 

2.2 Computation about Minimal Polynomials 

 The existence of minimal polynomials also highlights a method for us to find it. 

We solve the equation, 0A I , if no solution, we move on to solve 
2

0 1A I A   , do 

such an algorithm step by step until we get a solution such that 
1

1

m
m i

i

i

A A




 . By 

looking at the definition, such an algorithm must stop by some finite number of steps. 

Moreover, given A is an n by n square matrix, from the perspective of Cayley-Hamilaton 

theorem, this kind of process will necessarily end within n steps. 

On the other hand, for the matrix  ij nA a M  , define

 

then     1: 0k kK k N rank B rank B     . Moreover, if 0 mink K is the associated 

rank of matrix A and p is the minimal polynomial of A,  then   1krank B k  for 

00,1,..., 1k k  , and   0krank B k for 0k k , deg(p)=k0. 

 Now we consider   2

(0) (1) ( )

, 1

n

n n n
B a a a M


  , while  n ijB b , 

2

(1) ( ) ( )

11 12 11 1, 1 11 , 1
1, , , , , ,n n

n nnn n
b b a b a b a 

    , then we calculate the rank of Bn, which 

is 

 

2 2

12 1, 1

(1) (1)

22 2, 1

(1) (1)

,2 , 1

1

0

0

n

n

n

n n n

b b

b b
rank B rank

b b







 
 
 
 
 
 
 

, therefore, there exists r N  such that r N  

and
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If we set 0 0

0 0

1

0 1 1 0
k k

k kA A A   

    , where i ’s are the coefficients of the 

minimal polynomial of the matrix A, then the only solution is obtained by solving 

 where 

 

 

2.3 Three Schemes to Compute the Power of Matrices 

2.3.1 Diagonalizable Matrices 

In the simplest case, when the matrix is diagonalizable, we can always use the 

diagonality/similarity method to carry out the diagonal matrix. Recall that a n n matrix 

is diagonalizable if it has n distinct eigenvalues. In general, we write 

SPS
-1

=

1 0

0 n





 
 
 
 
 

. Observed that if the first row of S is normalized to  , then the 

first column of S
-1

 must be normalized to 1 since SS
-1

=I and hence (SV)11=u1v1=  v1=1 

where ui and vi’s are the row vectors and column vector of S and S
-1

 respectively. 
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Denote = 2

1

n





 
 
 
 
 
 

, P
t
= S

-1 2

2

1
t

t





 
 
 
 
 
 
 

S
t

11 1

12 1

1 1n

v u

v u

v u

 
 
 
 
 
 

=







 
 
 
 
 
 

 

where vij’s are the jth entry of the column vector vi since P has the unique largest 

eigenvalue 1 =1 by Perron-Frobenius Theorem. One may consider

2 31 n    ＞ , generally, given an initial distribution q0, q
(t)

=qP
t
= + '

2
i

n
t

i i

i

q u


  

where '

2

T

i
i

i

qu
q

u
 , ui’s are just the eigenvalue basis for P. 

Numerical Example: 

Diagonalize P =

1 1

2 2

3 1

4 4

 
 
 
 
 
 

,  

1
1 1

2 1 2 12 2

3 1 3 1 3 1

4 4


 
    
    

     
 
 

= 

1
0

4

0 1

 
 
 
 

 

1
3 2

1
2 1 2 1( ) 0 5 5

lim lim 4
3 1 3 1 3 2

0 1
5 5

n

n

n n
P



 

 
                    

  
 

1 2 3 2 3

3 2 2 2

5 5 5 5
( ) (1 ) [1 ( ) ( ) ]

3 2 3 34 4 4

5 5 5 5

z z z
I zP z z z

   
   

             
      
     

 

2.3.2 Comparing with Cayley-Hamilton Theorem 

Minimal polynomials state out a framework for efficiently computing the power 

of matrices, while the famous Cayley-Hamilton theorem also wins a lot of attraction for 

determining the coefficients of the characteristic polynomial in terms of matrix 

components. Here we will give a brief description about this enchanting theorem. 

Suppose A is an n n  matrix, then the characteristic polynomial we define above is 

( ) det( )Ap z zI A  , then p(A)=0. Without loss of generality, let us write 

1

1 0( ) n n

np a a   

    , denote ( )B   to be the adjoint matrix of I A  , then 

1

1 0( )( ) ( ) n n

nB I A I A I p I I a I a I      

        , on the other hand, write 



6 
 

( )B   as 
1 2

1 2 1 0( ) n n

n nB B B B B    

      , where iB ’s are n n  matrices. Then 

we get 

1 2

1 2 1 0( )( ) ( )( )n n

n nB I A B B B B I A      

         

1 2

1 2 1 3 2 0 1 0( ) ( ) ( )n n n

n n n n nB B B A B B A B B A B A    

              

1

1 0

n n

nI a I a I  

     

Compare the coefficients appearing in the each side of the above equation, we conclude 

that 

1

2 1 1

0 0

n

n n n

B I

B B A a I

B A a I



  



 

 

 

Moreover, we multiply nA , 1nA  , …, A , I  to each of the above equation respectively, 

add them together, we can easily get p(A)=0. In particular, given 

1

1 1 0( ) m m

mf x x a x a x a

      is the minimal polynomial of A, which means 

1

1 1 0

m m

mA a A a A a I

     , then any power k≥m could be expressed as  

( ) ( ) ( ) ( )kA f A q A r A r A    if ( ) ( ) ( )kx f x q x r x  . Cayley-Hamilton Theorem 

provides us with the conclusion that the degree of the minimal polynomial is just the size 

of the matrix, say n. In other words, there is no need for us to go through more than n 

steps to obtain the minimal polynomial. As for the diagonalizable case, same as the 

previous notation, if we denote 

 1 2 nS u u u  and 

1

21

n

v

v
S

v



 
 
 
 
 
 

 

Then 

1 2

1 1

1 1

1 2 0

1 2

0 0

0 0
n n

n n

m

n n

n n

A r S S r S S r I
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1 2

1 1

1

1 2 0

1 2

1

1

0 0

( )

0 0

0

0

n n

n

n n

n n

n n

m

m

S r r r I S

S S

 

 





 



 

 



   
   

      
   
   

 
 

  
 
 

 

 

What we need to do is solve a batch of equations, namely 

1

1 1 01

1

2 2 12

1

1

1

1

1
n

nm

nm

nm
n nn

r

r

r

 

 

 









    
    
    
    
       

    

 

 

 2.3.3 Remark: Extensions about the Power of Matrices 

 One may observed that, if we can efficiently determine the lower power of the 

matrix, then the higher powers could be obtained by multiplying these lower powers. 

Theoretically speaking, we can generate 
2 4 8, , ,A A A  such kind of matrices by simply 

checking 
2 3, , , , nA A A A . Moreover, if the minimal polynomial of the matrix is 

1

1 1 0( ) m m

mf x x a x a x a

      satisfying 0 0a  , then 

1 2
1 1 1

0

m m

mA a A a I
A

a

 
    
  given A is invertible. Hence, we can generate the 

negative powers for the matrix. 

 

 2.3.4 Partial Fraction Decomposition 

 Write 
1( )I zA   as a power series expansion, and then compare the coefficients 

of mA  to get the representative. 

 1 1 2

1 2 1

0

1
( ) ( )

det( )

k n n

k n n

k

I zA adj I zA z z B z B zB I
I zA




  

 



 
        

  
  

This should involve the computation of minimal polynomials of a univariate polynomial 

matrix. You may refer to (Karampetakis 2005). Eventually this method may not be very 

efficient, but at least, it provides such a framework comparing with previous sections. 
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2.4 Application in Controllability of Systems 

In modern mathematical control theory, stability, controllability and 

observability are three essential characters describing a system. Here we mainly focus on 

controllability of systems, and try to highlight some applications of power of matrices 

and minimal polynomials involved. In general, the mathematical model for a linear time-

invariant dynamical control system is represented by '( ) ( ) ( )x t Ax t Bu t  , where x(t) ∈ 

R
n
 is a state vector, u(t) ∈ R

m
 is an input vector, A, B are real matrices of appropriate 

dimensions. By the Existence and Uniqueness Theorem for differential equations, given 

an initial value x(0) ∈ R
n
 and control u(t) ∈ R

m
, there must exist a unique solution for 

( )

0
( ; (0), ) (0) ( )

t
tA t s Ax t x u e x e Bu s ds   . 

Definition: a system is said to be controllable if for every initial condition x(0) and every 

vector x
1
 ∈ R

n
, there exist a finite time t1 and control u(t) ∈ R

m
, t ∈ [0, t1], such that 

x(t1;x(0),u) = x
1
. 

For a discrete time case, we write 1t t tx Ax Bu    to represent the system. The 

controllability concept could be transferred to the following equation 

 

1

22 2 1

0

t

tt t

t

u

u
x B AB A B A B A B

u



 

 
 
 
 
 
 

 

where  2 2 1t t

tW B AB A B A B A B   is said to be the controllability matrix. 

By the Cayley-Hamilton Theorem, we can express each A
t
 for t  n as a linear 

combination of A
0
, . . . ,A

n−1
, hence rank(Wt) = rank(Wn). Thus, the system is 

controllable if and only if rank(Wt) = n. 

 For a continuous time case, the idea is similar while the proof is slightly 

different, you may refer to (Klamka 2008), a sketch proof is that the dynamical system is 

controllable if and only if for certain time t=t1 the range of integral operator 

( )

0
( )

t
t s A ne Bu s ds R  . However, since 1exp( )t A  is nonsingular for any t1 if and only if 

1

0

Tt
sA T sAe BB e ds 

  is nonsingular. Taking into account Taylor series expansion of 

exp( )sA  and Cayley-Hamilton Theorem we conclude that dynamical system is 

controllable if and only if rank(Wt) = n. 
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3. Conclusion 

 

In this paper, we focus on the minimal polynomials of matrices and revisit the 

existence and uniqueness of minimal polynomials. Eventually, we highlight a relatively 

efficient way to compute the minimal polynomial of matrices. Moreover, we conclude 

different interpretations to reduce the power of matrices, which is quite essential in 

computation of tendency of systems. And in the end, we give out an application of 

minimal polynomials about the controllability of systems. Also, there are many other 

extensions for future studies, for example, the minimal polynomial could be well-

defined for Mn(R), where R is a commutative ring. 
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