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Abstract 

In this project, our focus will be how to determine the stationary vector of a higher-

order Markov Chain. Specifically, we mainly focus on the iterative method proposed 

by Li, Ng and Ye (2011). Rather than the computation method itself, our problem is 

what kind of conditions of the parameters will give out infinitely many solutions, 

multiple solutions or a unique solution to the higher-order Markov Chain, which 

means we want to study the number of stationary probability vectors in the solution 

set. This is a relatively new topic which may lead to more future analysis. 

 

1. Introduction: Background 

 

1.1 Fundamental Concepts and Results in the Theory of Non-negative Matrices 

Definition A square matrix T is called non-negative if all its entries are non-

negative real values. We write T≥0 to represent such matrices. Meanwhile T is a 

square matrix which is called primitive if there exists a positive integer k such that T
k

＞0. 

First note that a non-negative matrix is not sufficient to be a primitive matrix. 

A simple example is 
1 1

1 0

 
 
 

 and 
0 1

1 1

 
 
 

 are both primitive matrices since 

2
1 1 2 1

1 0 1 1

   
   

   
 and 

2
0 1 1 1

1 1 1 2

   
   

   
 while 

0 1

1 0

 
 
 

 is non-negative but not 

primitive. 

 

1.2 Discrete Time-Homogeneous Markov Chains 

A discrete-time Markov chain is a stochastic process  , 0,1,2tX t   with a 

discrete finite state space S such that with time independent probability 

   1 1 1 2 2 1 1 0 0 1Pr | , , , , , , Pr |t t t t t t t t ijX j X i X i X i X i X i X j X i p                

holds for all 0 1, , , , ti j i i  . Then a unit sum vector X is said to be a stationary 

probability vector or distribution of a finite Markov Chain if XP=X where 

 , ,ijP p i j S  . The following theorem guarantees the existence and uniqueness of 

the stationary probability vector of a discrete-time Markov Chain. 
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1.3 The Perron-Frobenius Theorem for Primitive Matrices (Without Proof) 

Suppose T is an n by n non-negative primitive matrix. Then there exists an 

eigenvalue r such that r is a real positive simple root of the characteristic equation of 

T, r＞|λ| for any eigenvalue λ≠r and the eigenvectors associated with r are unique to 

constant multiples. If 0≤B≤T and β is an eigenvalue of B, then |β|≤r. Moreover, |β|=r 

implies B=T. 

We have to admit that the Perron-Frobenius Theorem is the most fundamental 

theorem for non-negative matrices, and it highlights and guarantees the so-called 

nature of finite Markov Chains, which is the convergence of an irreducible finite 

Markov Chain to its stationary probability distribution. 

 

2. Higher-order Markov Chains 

 

2.1 Definitions and Concepts 

We consider a stochastic process with a sequence of random variables, 

 , 0,1,2tX t  , which takes on a finite set 0,1,2, ,S n  called the state set of 

the process.  

Definition 2.1 Suppose the probability independent of time satisfying 

 

 
1 2

1 1 1 2 2 3 1 0 1

1 1 1 2 2 3 1 , , , ,

Pr | , , , , , ,

Pr | , , , ,
m

t t t t t t

t t t t t m m i i i i

X i X i X i X i X i X i

X i X i X i X i X i p

   

    

     

      
 

where 1 2, , , , mi i i i S , then it is called a m-th order Markov Chain, in other words, 

the current state of the process depends on m past states. Observed that 

1 2, , , ,

1

1
m

n

i i i i

i

p


 . When m=1, it is just the regular standard Markov Chain. 

Definition 2.2 Write  
1 2 3i i ia   to be a three-order n-dimensional tensor, where 

1 2 3i i ia   and 1 2 31 , ,i i i n  , define an n-dimensional column vector 

2 3 2 3

2 3

2

, 1
1

n

ii i i i

i i
i n

X a x x


 

 
   

 
  given 

1

2

n

x

x
X

x

 
 
 
 
 
 

 

Warning: this ‘three-order’ has nothing to do with the ‘m-th’ order in the previous Definition 2.1 

 



3 
 

Definition 2.3 A three-order n-dimensional tensor  
1 2 3i i ia   is called reducible if 

there exists a non-empty proper index subset {1,2, , }I n  such that 

1 2 3 1 2 30, , ,i i ia i I i i I     , if  
1 2 3i i ia   is not reducible, we call it irreducible. 

In fact, if P is an irreducible non-negative three-order n-dimensional tensor of a high-

order Markov Chain, Li, Ng and Ye (2011) has proved that in order to obtain the 

stationary probability vector X of a high-order Markov Chain, we just need to solve 

2X X  . 

 

2.2 Conditions for Each Point in the Simplex Being a Stationary Vector 

For simplicity, we rewrite the above equation 
2X X   for a tensor as 

1 1 1 1

1 1 2 2 n n

n n n n

x x x x

x A x A x A

x x x x

       
       

          
       
       

 where iA ’s are n n  column stochastic 

matrices with all entries are real numbers. 

Theorem 2.1 Proposition about number of the stationary vectors for 2 2  case 

Now we are considering, where all  1 2 1 2, , , 0,1a a b b  ,  0,1x  

 1 1 2 2

1 1 2 2

1
1 1 1 11 1 1

a b a bx x x
x x

a b a bx x x

        
          

             
 

Then one of the following holds 

(1) If 1 2 2 11, 0, 1a b a b    , then we must have infinitely many solutions, 

namely, every 
1

x

x

 
 
 

 with  0,1x  is a solution to the above equation. 

(2) If 1 2 11, 1a a b  ＜ , then we must have two solutions 1x   or 

2

2 2 11

b
x

b a b


  
 

to the above equation. 

(3) Otherwise, we must have a unique solution with the condition that 

If 1 2 1 2 0a a b b    , excluding the condition in (1), then 2

2 2 12 1

b
x

b a b


  
 

If 1 2 1 2 0a a b b    , then 
 
2 2 1

1 2 1 2

2 1

2

b a b
x

a a b b

    


  
 given 
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2 2

2 1 2 2 1 2 1 2 2 1 2 12 1 4 1 4 1 0a b b b a a b b a b b a                

Proof: The setting is as above, write 

   

   

1 1 2 2

1 1 2 2 1

2

1 2 1 2 2 1 2 2

1
1 1 1 11 1

2

a b a bx x
f x x x

a b a bx x

a a b b x a b b x b

       
         

           

       

 

We want to solve  f x x  to determine the solution. 

Observed that if we set 

       2

1 2 1 2 2 1 2 22 1 0g x f x x a a b b x a b b x b             

  20 0g b   and   11 1 0g a   , hence by the Intermediate Value Theorem, there 

must exist at least one  0 0,1x  , such that  0 0g x   

Let        
2 2

2 1 2 2 1 2 1 2 2 1 2 12 1 4 1 4 1 0a b b b a a b b a b b a                

If 1 2 1 2 0a a b b    , the quadratic equation reduced to  2 1 2 22 1 0a b b x b     , 

then if 2 1 22 1 0a b b    , i.e. 1 2 2 11, 0, 1a b a b    , there are infinitely many 

solutions; otherwise if 2 1 22 1 0a b b    , then the Intermediate Value Theorem 

guarantees that the unique solution is 2

2 2 12 1

b
x

b a b


  
 

If 1 2 1 2 0a a b b    , there are two solutions to the quadratic equation, which are 

 
2 2 1

1

1 2 1 2

2 1

2

b a b
x

a a b b

    


  
 and 

 
2 2 1

2

1 2 1 2

2 1

2

b a b
x

a a b b

    


  
 

When 0  , no matter 1 2 1 2 0a a b b   ＜  or 1 2 1 2 0a a b b   ＞ , we get only one 

solution 
 

2 2 1

1 2 1 2

2 1

2

b a b
x

a a b b

  


  
, it must be the unique solution we want by the 

Intermediate Value Theorem. 

When 0＞ , note that    
2

2 2 1 2 1 2 1 22 1 4b a b b a a b b         

and 

      
2 2

2 2 1 1 2 1 2 2 1 1 1 1 2 1 22 1 2 1 2 4 1b a b a a b b a b a a a a b b                     

If 1 2 1 2 0a a b b   ＜ , of course 2 0b   since we set 0＞ , 

hence  
2

2 2 1 2 2 12 1 0 2 1b a b b a b         ＜ ＜ ＜ , 
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then 
 
2 2 1

2

1 2 1 2

2 1
0

2

b a b
x

a a b b

    


  
＜ , then we conclude there is only one satisfied 

solution which is 
 
2 2 1

1

1 2 1 2

2 1

2

b a b
x

a a b b

    


  
 

If  1 2 1 2 0a a b b   ＞ , then    
2

2 2 1 2 1 2 1 22 1 4 0b a b b a a b b          

and 

      
2 2

2 2 1 1 2 1 2 2 1 1 1 1 2 1 22 1 2 1 2 4 1 0b a b a a b b a b a a a a b b                      

(i) 1 21, 0a b  , then 

   
2 2 1 2 1 1

2 2

1 2 1 2 1 2 1 2

2 1 1 2
1 1 0

2 2

b a b a b a
x x

a a b b a a b b

         
    

     
＞ ＞1, 

hence we conclude that 
 
2 2 1

1

1 2 1 2

2 1

2

b a b
x

a a b b

    


  
 is the unique solution 

we require. 

(ii) 1 21, 0a b   and 2 1 1a b  , then the situation is the same as (i), just plug 

in 2 0b   

(iii) 1 21, 0a b   and 2 1 1a b  , then 2 1 11 2a b a     , 

 
2 2 1

1

1 2 1 2

2 1
1

2

b a b
x

a a b b

    
 

  
 and  

 
2

1

2 1 2

1
1

b
x

a b b
 

  
, hence we 

conclude the unique solution we require is 1 1x   

(iv) 1 21, 0a b   and 2 1 1a b ＜ , then there are two solutions, which are 1x   

and 2

2 2 11

b
x

b a b


  
, just the same situation with (iii) except that 

 
2

1

2 1 2

0 1
1

b
x

a b b


  
＜ ＜  

(v) 1 21, 0a b   and 2 1 1a b  , directly plug in the value and solve the 

equation we get 1x   and 0x   

 

Then we want to extend the condition for infinitely many solutions for n n  case 



6 
 

Theorem 2.2 For 

1 1 1 1

1 1 2 2 n n

n n n n

x x x x

x A x A x A

x x x x

       
       

          
       
       

, each element in the set 

 
1

1

| 1, 0,1 1,2, ,
n

i i

i

n

x

x x for i n

x


 
 

     
 

 

  would be a solution to the equation 

if and only if 

12 1

12

1

1

1

1

1

n

n

a a

a
A

a

 
 

 
 
 

 

, 

12

12 23 2

2 23

2

1

1

1

1

n

n

a

a a a

A a

a

 
 
 
  
 
 
  

, ……, 

1

2

1,

1 , 12 1,

, 1

1

1

1

1

1

1

i

i

i i

i

ini i ii i i

i i

in

a

a

a
A

aa aa a

a

a







 
 

 
 
 

 
  
 

 
 
 
  

, ……, 

1

2

1,

1 2 1,

1

1

1

1

n

n

n

n n

n n n n

a

a

A

a

a a a





 
 

 
 
 
 

  
 
 
 


 
 
 

 

 

Proof: " " , trivial, by directly checking row by row. 

" " , first note that in Theorem 2.1, we have proved that for 2 2  case, if we have 

infinitely many solutions, the two matrices must be of the form 

12 12

1 2

12 12

1 1 0
,

0 1 1

a a
A A

a a

   
    

   
, hence, for 3 3  case 
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11 12 13 11 12 13 11 12 13

1 21 22 23 2 21 22 23 3 21 22 23

31 32 33 31 32 33 31 32 33

a a a b b b c c c

x a a a X x b a b X x c c c X X

a a a b b b c c c

     
     

       
     
     

, if we set the 

third entry of the stationary vector X to be 0, then we can have infinitely many 

solutions as 

1

2

0

x

X x

 
 

  
 
 

 with 1 2 1x x  ,  1 2, 0,1x x   if and only if the sub-matrices 

11 12

21 22

a a

a a

 
 
 

 and 
11 12

21 22

b b

b b

 
 
 

 of A1 and A2 must be with the form of 
12

12

1

0 1

a

a

 
 

 
 and 

12

12

1 0

1

a

a

 
 
 

, which uniquely determine the entries of 
11 12

21 22

a a

a a

 
 
 

 and 
11 12

21 22

b b

b b

 
 
 

. 

Similarly, we set the second entry of X to be 0, we can uniquely determine the sub-

matrices 
11 13

31 33

a a

a a

 
 
 

 and 
11 13

31 33

c c

c c

 
 
 

 of A1 and A3, which must be with the form of 

13

13

1

0 1

a

a

 
 

 
 and 

13

13

1 0

1

a

a

 
 
 

; also, we set the first entry of X to be 0, we can 

uniquely determine the sub-matrices 
22 23

32 33

a a

a a

 
 
 

 and 
22 23

32 33

c c

c c

 
 
 

 of A2 and A3, which 

must be with the form of 
23

23

1

0 1

a

a

 
 

 
 and 

23

23

1 0

1

a

a

 
 
 

, therefore, the three matrices 

are uniquely determined by 

12 13 12 13

1 12 2 12 23 3 23

13 23 13 23

1 1 0 0 1 0 0

0 1 0 , 1 , 0 1 0

0 0 1 0 0 1 1

a a a a

A a A a a A a

a a a a

      
     

         
           

. 

Similarly, we use this method and result for 3 3  case to determine the four matrices 

of 4 4  case. Inductively, we use the     1 1n n    with 

12 1, 1

12

1

1, 1

1

1

1

n

n

a a

a
A

a





 
 

 
 
   

, 

12

12 23 2, 1

232

2, 1

1

1

1

1

n

n

a

a a a

aA

a





 
 
 
 
 
 
  

, ……, 
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1

2

1,

, 11 , 12 1,

, 1

, 1

1

1

1

1

1

1

i

i

i i

i

i ni i ii i i

i i

i n

a

a

a
A

aa aa a

a

a









 
 

 
 
 

 
  
 
 
 
 
  

, ……, 

1, 1

2, 1

1

2, 1

1, 1 2, 1 2, 1

1

1

1

1

n

n

n

n n

n n n n

a

a

A

a

a a a







 

   

 
 

 
 
 
 

  
 
 
 


 
 
 

 for i=1,2,…, (n-1) 

When we set the j-th entry of 

1

n

x

X

x

 
 

  
 
 

 0jx   for j=1,…,n respectively, then we can 

determine the (n-1) sub-matrices which are exactly of the form 

12 1, 1 1, 1 1

12

1 1, 1

1, 1

1

1

1

1

1

1

j j n

j

j

n

a a a a

a

B a

a

a

 





 
 

 
 
 

  
 
 
 
  

 

12

12 23 2, 1 2, 1 2

23

2

2, 1

2, 1

2

1

1

1

1

1

1

j j n

j

j

n

a

a a a a a

a

B
a

a

a
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…… 

 

1, 1

2, 1

2, 1

1

1,1, 1 1, 12, 1 2, 1

1, 1

1,

1

1

1

1

1

1

j

j

j j

j

j nj j jj j j

j j

j n

a

a

a
B

aa aa a

a

a





 



    

 



 
 

 
 
 

 
  
 
 
 
 
  

 

1, 1

2, 1

1, 1

1

1,1, 1 1, 22, 1 1, 1

1, 2

1,

1

1

1

1

1

1

j

j

j j

j

j nj j jj j j

j j

j n

a

a

a
B

aa aa a

a

a





 



    

 



 
 

 
 
 

 
  
 
 
 
 
  

 

 

…… 

 

1

2

1,

1,

1,

1 2 1, 1, 1,

1

1

1

1

1

1

n

n

j n

n

j n

n n

n n j n j n n n

a

a

a
B

a

a

a a a a a







  

 
 

 
 
 

 
  

 
 
 

 
 
 

 

 

By combining all the sub-matrices obtained within n steps, use the same aij’s from 

above, hence, we get the matrices A1, …, An being the form we require. 

Remark: Observed that if we pick up the i-th row of each Ai to form a new matrix M, 

we can easily see that 
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12 13 1

12 22 2

13 22

1,

1,1 2

1

1

1

1

n

n

n n

n nn n

a a a

a a a

a aM

a

aa a





 
 
 
 
 
 
 
 

, which is an n n  symmetric matrix with all 

entries of the diagonal equal to 1. Li, Ng and Ye (2011) state that given P is an 

irreducible non-negative tensor of order p and dimension n, if 1 is not the eigenvalue 

of DT(x), the Jacobian matrix of T, for all \x  , then X is unique where 

  1: , p

i i
T T X PX        . 

In fact, if the i-th column of Ai is ei, which is i-th column of the identity 

matrix, and all the other entries equal to 
1

n
, then there are n solutions which are e1, e2, 

…, en. And there must be no common zero  n n k   blocks within these matrices. 

Finally, we state out an independent conclusion describing the nature of number of 

solutions. 

Theorem 2.3 Given any two solutions lying on the interior of 1-dimensional face of 

the boundary of the simplex, then the whole 1-dimensional face must be a set of 

collection of solutions to the above equation. 

Proof: Observed that, for 2 2  case, if we are given two solutions of the form 

1

1

21

x
X

x

 
  

 
 and 

2

2

21

x
X

x

 
  

 
 where  1 2, 0,1x x  , then we must conclude that 

there are infinitely many solutions  , 0,1
1

x
X x

x

 
  

 
 since if we have two and 

only two solutions, one of them must be 
1

0
X

 
  
 

, which is a contradiction. 

Therefore, given two solution of the form 

1 0 0 0 0 0 0

T

i j
i th j th

X x x
 

 
  
 

 

and 
2 0 0 0 0 0 0

T

i j
i th j th

X x x
 

 
   

 
 

with  , , , 0,1 , 1, 1i j i j i j i jx x x x x x x x        , then the two 2 2  sub-matrices, 

which are obtained by picking up the i-th and j-th rows and i-th and j-th columns from 
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the Ai and Aj must be of the form 
1

0 1

a

a

 
 

 
 and 

1 0

1

a

a

 
 
 

, which will give out 

infinitely many solutions. i.e. all points lie on the whole 1-dimensional face will be a 

solution. From this perspective, we conclude that we could not observe three points 

which two of them lie on the same 1-dimensional face and a single point outside the 

face. 

 

We conjecture that given any k+1 solutions lying in the interior of the k-dimensional 

face of the simplex, and any q of them (q＜ k) do not lie on the same (q-1)-

dimensional face, then any point lying in the whole k-dimensional face, including the 

vertexes and boundaries, will be a solution to the equation. We leave it for readers to 

prove or disprove the result. 

 

 

2.3 Applications in DNA Sequence Prediction 

Higher-order Markov Chains are often used to describe the flow direction of 

sequences of random variables. One important application in predicting the DNA 

sequence rises up in recent years. In the book written by Ching and Ng (2006), they 

also highlight this aspect by considering the mouse αA-crystallin gene (Raftery and 

Tavare 1994). The main idea is to rewrite the model into the following mathematical 

form: 

 

xt+i is the state vector at time (t + i) and xt+n depends on xt+n−i (i = 1, 2, . . . , n), then 

if Qi is irreducible, λi > 0, then the model has a stationary distribution x, where x is the 

unique solution of the linear system (Zhu and Ching 2011): 

 

Here we ignore the details since we are considering the number of stationary 

probability vectors to our three-order n-dimensional tensor. But indeed, they have 

some underlying connections. For details, you may refer to (Ching and Ng 2006) and 

(Zhu and Ching 2011). 
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3. Conclusion 

 

In this paper, we start with the results proposed by Li, Ng and Ye (2011) and 

try to figure out the assumption conjecture they raised in their paper. Originally, they 

are considering the general solution to a p-order n-dimensional tensor, but due to our 

understanding about the tensor itself, we are not considering many situations. But 

eventually we end up with some beautiful small theorems describing the nature of 

infinitely many solutions over the whole simplex for three-order case. Many other 

corollaries could be deduced from what we state in Theorem 2.2, we leave it for 

readers to reach out some more influential conclusions. 
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