
Math 307 Final Examination (Take home part) Name: Sample solution

1. Let R be a commutative ring and N an ideal of R.

(a) Show that J = {a ∈ R : an ∈ N for some n ∈ Z+} is an ideal of R.

Solution. Clearly, 01 ∈ N so that 0 ∈ J .

If a, b ∈ J , then an, bm ∈ N . So, (a−b)n+m =
∑n+m

j=0

(
n+m
j

)
ajbm+n−j ∈ J because ajbm+n−j ∈

J as j ≥ n or m+ n− j ≥ m.

Further, if an ∈ N, c ∈ R, then (ac)n = ancn ∈ N .

Combining, we see that J is an ideal.

(b) Suppose R = Z. Give an example of N so that J 6= N .

Proof. Let N = 4Z. Then 2 /∈ N , but 2 ∈ J as 22 = 4 ∈ N . So, N 6= J .

2. (a) Let D′ be a subdomain of an integral domain D. Show that char(D′) = char(D).

Solution. Suppose 1 ∈ D and 1′ ∈ D′ are the unity of D and D′, respectively. Then 1′ = 1′1′

in D′ and 11′ = 1′ in D so that 0 = 11′−1′1′ = (1−1′)1′. Since D has no zero divisor, 1 = 1′.

As a result, char(D′) = |1′| = |1| = char(D).

(b) Give an example to show that the characteristic of a subring of a ring R may be different

from that of R.

Solution. Let R = Z4, K = {2, 0} ⊆ R. Then char(R) = 4 and char(K) = 2.

(c) Give an example of a chain of 5 distinct integral domains D1 ⊆ D2 ⊆ D3 ⊆ D4 ⊆ D5.

Solution. Examples: Z ⊆ Q ⊆ R ⊆ C ⊆ C[x], Z ⊆ Z[x] ⊆ Q[x] ⊆ R[x] ⊆ C[x],

Z ⊆ Q ⊆ Q[
√

2] ⊆ R ⊆ C.

Common mistakes Z2 is not a subring of Z.

3. Determine (with explanation) ALL ring homomorphisms φ : Z× Z→ Z× Z.

Solution. Consider all possible values of φ(1, 0) = (a, b) and φ(0, 1) = (c, d). Because

φ((1, 0)(1, 0)) = φ(1, 0). So, a2 = a, b2 = 1 so that a, b ∈ {1, 0}. Similarly, {c, d} ∈ {1, 0}.

Note also that φ(1, 1)2 = φ(1, 1). So, a+ c, b+ d ∈ {0, 1}.

If (a, b) = (0, 0) then (c, d) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}; if (a, b) = (1, 0) then (c, d) ∈
{(0, 0), (0, 1)}; if (a, b) = (0, 1) then (c, d) ∈ {(0, 0), (1, 0)}; if (a, b) = (1, 1) then (c, d) = (0, 0).

Thus, we may have φ(x, y) = (0, 0), (y, 0), (0, y), (y, y), (x, 0), (x, y), (0, x), (y, x), or (x, x).

It is easy to check that each of these 9 cases indeed yield a ring homomorphism: First,

φ(x, y) = xφ(1, 0) + yφ(0, 1) ∈ Z ⊕ Z so that φ is well defined. Also, if (a, b), (c, d) ∈
Z ⊕ Z, then φ(a, b) + φ(c, d) = [aφ(1, 0) + bφ(0, 1)] + [cφ(1, 0) + dφ(0, 1)] = (a + c)φ(1, 0) +

(b + d)φ(0, 1) = φ((a, b) + (c, d)), and φ(a, b)φ(c, d) = [aφ(1, 0) + bφ(0, 1)][cφ(1, 0)dφ(0, 1)] =

aφ(1, 0)cφ(1, 0) + adφ(1, 0)φ(0, 1)bcφ(0, 1)φ(1, 0) + bdφ(0, 1)φ(0, 1) = acφ(1, 0) + bdφ(0, 1) =

φ(ac, bd) = φ((a, b)(c, d)).

4. Let A = 〈x4 + x+ 1〉 in Z2[x].

(a) Show that F = Z2[x]/A is a field.

Solution. We need to show that f(x) = x4 + x + 1 is irreducible. Clearly, f(0) = f(1) = 1.

So, f(x) has no linear factor. Suppose f(x) has a quadratic factor g(x) = x2 + bx + c.
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Then c = 1. So, g(x) = x2 + 1 or g(x) = x2 + x + 1. Now, f(x) = (x2 + 1)2 + x and

f(x) = (x2 + x+ 1)(x2 + x+ 1) + 1. Hence, f(x) is irreducible and Z2[x]/A is a field.

(b) Pair up all the elements in (F∗, ·) that are multiplicative inverses of each other.

Solution. We have the following pairs of mutually inverse elements: (1+A, 1+A), (x+A, 1+

x3 + A), (x2 + A, 1 + x2 + x3 + A), (x3 + A, 1 + x + x2 + x3 + A), (1 + x + A, x + x2 + x3 +

A), (x+ x2 +A, 1 + x+ x2 +A), (x+ x3 +A, x2 + x3 +A), (1 + x2 +A, 1 + x+ x3 +A).

Common mistakes. Write elements in F∗ as polynomials 1, x instead of 1 +A, x+A, etc.

(c) Determine all the generators (with explanation) of the group (F∗, ·).
Solution. Note that (x + A)3 = x3 + A 6= 1 + A and (x + A)5 = x5 + A = x(x + 1) + A =

x2 + x+A 6= 1 +A. We see that (x+A) has order 15, and is a generator.

Common mistake. Just say (x+A)5 6= 1 +A without explanation.

Furthermore, (x+A)m is a generator if and only gcd(m, 15) = 1. So, x+A, (x+A)2 = x2+A,

(x+A)4 = 1+x+A, (x+A)7 = 1+x+x3+A, (x+A)8 = 1+x2+A, (x+A)11 = x+x2+x3+A,

(x+A)13 = 1 + x2 + x3 +A, (x+A)14 = a+ x3 +A are all the generators.

Common mistake. Just say that (x + A)m is a generator if gcd(m, 15) = 1 without even

writing down what the values m are.

5. Let p > 2 be a prime number.

(a) Show that φ : Z∗p → Z∗p defined by φ(x) = x2 is a homomorphism with ker(φ) = {1,−1},
and deduce that H = φ(Z∗p) has (p− 1)/2 elements.

Solution. Evidently, if a = b then a = b+ kp and φ(a2) = (b+ kp)2 = b2 + 2bp+ b2p2 = b2 so

that φ is well defined. Further, φ(ab) = (ab)2 = a2b2 = φ(a)φ(b) for any a, b ∈ Z∗p. So, φ is a

well-defined homomorphism on (Z∗p, ·).
Note that x ∈ ker(φ) if and only if x2 = 1. The only solutions for the quadratic polynomial

x2 − 1 in the field Zp is ±1, i.e., 1 and p− 1. Thus, φ(Z∗p) is isomorphic to Z∗p/{1, p− 1} has

(p− 1)/2 elements.

Common mistakes. Forget to check that φ is well defined; no justification for no other

r ∈ ker(φ) besides 1,−1.

(b) Show that there is a ∈ Zp such that a2 ∈ {−1, 2,−2}, i.e., the subgroup H in (a) contains

an element in {−1, 2,−2}.
Solution. Let Z∗p/H = {H, rH} has order 2. If −1 or −2 is in H, then we have a ∈ Z∗p
such that φ(a) = a2 = −1 or −2. If −1,−2 /∈ H, then (−1)H = (−2)H = rH. So,

2H = (−1)H(−2)H = rHrH = r2H = H. Thus, 2 ∈ H and there is a ∈ Z∗p such that

a2 = 2.

(c) Show that x4 + 1 ∈ Zp[x] is reducible.

If there is a2 = −1, then (x2 + a)(x2 − a) = x4 + 1.

If there is a2 = −2, then (x2 + ax− 1)(x2 − ax− 1) = x4 − (2 + a2)x2 + 1 = x4 + 1.

If there is a2 = 2, then (x2 + ax+ 1)(x2 − ax+ 1) = x4 + (2− a2)x2 + 1 = x4 + 1.

(d) Show that x4 + 1 is reducible in Z2[x].

We have (x2 + 1)(x2 − 1) = x4 + 1.
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Math 307 Final Examination In class part Name: Sample solution

1. Show that if G is a group with no proper non-trivial subgroup and has at least two elements,

then G is isomorphic to Zp for some prime number p.

Solution. Let a ∈ G not equal to e. Then H = 〈a〉 6= {e}. So, G = 〈a〉 is cyclic. If |a| is

infinite, then 〈a2〉 is a proper subgroup of G, which is a contradiction. If |a| = n, then it must

be a prime; else 〈ak〉 will be a proper subgroup of G for any proper factor k of n. So, G is

isomorphic to Zn for a prime n.

Common mistake. Forget to discuss the case when |a| is infinite.

2. Let φ : G1 → G2 be a group homomorphism, and H be a normal subgroup of G1.

(a) Show that φ(H) is a normal subgroup of φ(G1).

Solution. It is known that subgroups of G1 are mapped to subgroups of G2.

So, φ(H), φ(G1) are subgroups of G2. Evidently, φ(H) ⊆ φ(G1). Note that φ(e1) = e2 ∈
φ(H) ⊆ G2 so that φ(H) is non-empty. If y1, y2 ∈ φ(H), then there are h1, h2 ∈ H such that

φ(h1) = y1 and φ(h2) = y2. So, y−11 y2 = φ(h1)
−1φ(h2) = φ(h−11 h2) ∈ φ(H) as h−11 h2 ∈ H.

Let H = G1. We see that φ(G1) is a subgroup of G2.

Clearly, φ(H) ⊆ φ(G1). To show that φ(H) is a normal subgroup of φ(G1), suppose y ∈ φ(H)

and z ∈ φ(G1). Then there are h ∈ H and g ∈ G1 such that φ(h) = y and φ(g) = z. Thus

zyz−1 = φ(g)φ(h)φ(g)−1 = φ(ghg−1) ∈ φ(H) as ghg−1 ∈ H. So, φ(H) is a normal subgroup

of φ(G1).

Common mistake. Forget to mention or check that φ(H) is a subgroup of φ(G1). Forget

to pick y ∈ φ(H) and z ∈ φ(G1) to check the condition zyz−1 ∈ φ(H).

(b) Give an example to show that φ(H) may not be a normal subgroup of G2.

Solution. For example, let H = G1 = Z2 and G2 = S3. Define φ : G1 → G2 by φ(1) = (1, 2),

the transposition. Then φ(H) = {(1, 2), ε}, where ε is the identity in S3, is not normal in G2

because (1, 3)φ(H) = {(1, 2, 3), ε} 6= {(1, 3, 2), ε} = φ(H)(1, 3).

3. Let R1 = {a+ i
√

2b : a, b ∈ Z}.

(a) Show that R1 is a subring of C.

Solution. Let 0 = 0+i
√

20 ∈ R1. So, R1 is nonempty. If z1 = a1+i
√

2b1, z2 = a2+i
√

2b2 ∈ R1,

then z1−z2 = (a1−a2)+
√

2(b1−b2) ∈ R1, and z1z2 = (a1a2−2b1b2)+
√

2(a1b2 +a2b1) ∈ R1.

So, R1 is a subring.

(b) Show that R1 is isomorphic to R2 =

{(
a b
−2b a

)
: a, b ∈ Z

}
.

Solution. Clearly, φ(z) ∈ R2 for every z ∈ R1. So, φ is well-defined.

1-1: If f(z1) = f(z2) =

(
a b
−2b a

)
, then z1 = z2 = a+

√
2bi.

Onto: For any A =

(
a b
−2b a

)
∈ R2, we have z = a+ i

√
2b ∈ R1 satisfying φ(z) = A.
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Operation preserving. For any z1 = a1 +
√

2b1i, z2 = a2 + i
√

2b2 ∈ R1 so that z1z2 =

(a1a2 − 2b1b2) +
√

2(a1b2 + a2b1), we have φ(z1) = A1 =

(
a1 b1
−2b1 a1

)
and φ(z2) = A2 =(

a2 b2
−2b2 a2

)
. Then φ(z1) + φ(z2) = A1 + A2 =

(
a1 + a2 b1 + b2
−2b1 − 2b2 a1 + a2

)
= φ(z1 + z2) and

φ(z1)φ(z2) = A1A2 =

(
a1a2 − 2b1b2 a1b2 + a2b1
−2(a1b2 + a2b1) a1a2 − 2b1b2

)
= φ(z1z2). The result follows.

Remark This is a straight forward problem. One does not need to check that R2 is a subring.

The result will imply that R2 is isomorphic to R1 and hence is a subring.

Undesirable mistake. One consider z = a+ i
√

2b, z−1, φ(z)−1, etc. and gave some wrong

formula and cause some unnecessary deduction of points.

4. (a) Show that R1 = {(a, a) : a ∈ Z} is a subring, but not an ideal of Z⊕ Z.

Solution. Clearly, (0, 0) ∈ R1 is non-empty. If (a, a), (b, b) ∈ R1, then (a, a) − (b, b) =

(a− b, a− b) ∈ R1 and (a, a)(b, b) = (ab, ab) ∈ R1. So, R1 is a subring.

Now, (1, 1) ∈ R1 and (1, 0) ∈ Z⊕ Z, but (1, 1)(1, 0) = (1, 0) /∈ R1. So, R1 is not an ideal.

(b) Show that R2 = {(3a, 5b) : a, b ∈ Z} is an ideal of Z⊕ Z, but not a prime ideal.

Solution. Clearly, (0, 0) ∈ R2 is non-empty. If (3a, 5b), (3c, 5d) ∈ R2 and (f, g) ∈ Z⊕ Z, then

(3a, 5b)− (3c, 5d) = (3(a− c), 5(b− d) ∈ R2 and (3a, 5b)(f, g) = (3af, 5bg) ∈ R2. So, R2 is an

ideal.

Now, (1, 0), (0, 1) do not belong to R2, but their product (0, 0) lies in R2. So, R2 is not a

prime ideal.

5. Show that A = {f(x) ∈ Z[x] : f(1) = 0} is a prime ideal but not a maximal ideal of Z[x].

Solution. Clearly, the zero polynomial g(x) = 0 lies in A so that A is nonempty.

If a(x), b(x) ∈ A, then a(1) = b(1) = 0. So, a(1) − b(1) = 0. Furthermore, for any a(x) ∈ A
and c(x) ∈ Z[x], a(1)c(1) = 0 so that a(x)c(x) ∈ A. So, A is an ideal.

Suppose c(x), d(x) ∈ Z[x] satisfy c(x)d(x) ∈ A. Then c(1)d(1) = 0 so that c(1) = 0 or

d(1) = 0. Hence, c(x) or d(x) lies in A. We see that A is a prime ideal.

Now, g(x) ∈ A if and only if g(1) = 0, i.e., (x− 1) is a factor of g(x). So, A = {(x− 1)q(x) :

q(x) ∈ Z[x]}. For any h(x) ∈ Z[x], we have h(x) = (x − 1)q(x) + h(1) with c = h(1) ∈ Z by

the factor theorem. So, Z[x]/A = {c+ A : c ∈ Z}. Now, if 2 + A ∈ Z[x]/A, there is no c+A

such that (2 +A)(c+A) = 2c+A = 1 +A. So, Z[x]/A is not a field, i.e., A is not maximal.

Common mistake To construct an ideal B lying strictly between A and Z[x], one needs to

give the detailed explanation that B is an ideal, A 6= B and B 6= Z[x]. In fact, some examples

were given that B is not an ideal, B = A or B = Z[x].
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