Math 307 Final Examination (Take home part) Name: Sample solution

1. Let R be a commutative ring and N an ideal of R.
(a) Show that J = {a € R:a™ € N for some n € Z"} is an ideal of R.
Solution. Clearly, 0! € N so that 0 € J.

If a, b S J, then a/n, bm S N SO, (a—b)n+m = Z?ign (n—;m) a/]bm“l’nfj c J because a]bm‘i’n*j [=

Jasj>norm+n—j>m.

Further, if a € N, c € R, then (ac)"” = a™c™ € N.

Combining, we see that J is an ideal.

(b) Suppose R = Z. Give an example of N so that J # N.

Proof. Let N =47. Then2¢ N, but 2¢€ J as 22 =4 € N. So, N # J.

2. (a) Let D’ be a subdomain of an integral domain D. Show that char(D’) = char(D).

Solution. Suppose 1 € D and 1’ € D’ are the unity of D and D', respectively. Then 1" = 1’1’
in D" and 11’ = 1" in D so that 0 = 11'—1'1" = (1 —1")1". Since D has no zero divisor, 1 = 1'.
As a result, char(D’) = |1'| = |1| = char(D).

(b) Give an example to show that the characteristic of a subring of a ring R may be different
from that of R.

Solution. Let R = Z4, K = {2,0} C R. Then char(R) = 4 and char(K) = 2.

(c) Give an example of a chain of 5 distinct integral domains D; C Dy C D3 C Dy C Ds.

Solution. Examples: ZC Q CR C C C C[z], Z C Z[x] C Q[z] C R[z] C C[z],
ZCQCQV2JCRCC.

Common mistakes Zo is not a subring of Z.

3. Determine (with explanation) ALL ring homomorphisms ¢ : Z X Z — Z X Z.
Solution. Consider all possible values of ¢(1,0) = (a,b) and ¢(0,1) = (c,d). Because
#((1,0)(1,0)) = ¢(1,0). So, a* = a,b? = 1 so that a,b € {1,0}. Similarly, {c,d} € {1,0}.
Note also that ¢(1,1)2 = ¢(1,1). So, a +c,b+d € {0,1}.
If (a,b) = (0,0) then (¢,d) € {(0,0),(1,0),(0,1),(1,1)}; if (a,b) = (1,0) then (c,d) €
{(0,0), (0, 1)}; if (a,b) = (0, 1) then (c,d) € {(0,0), (1,0)}: if (a,b) = (1,1) then (¢, d) = (0,0).

Thus, we may have ¢(z,y) = (0,0),(y,0),(0,v), (y,y), (x,0),(z,y), (0,z), (y,x), or (z,x).
It is easy to check that each of these 9 cases indeed yield a ring homomorphism: First,

o(x,y) = xp(1,0) + yp(0,1) € Z B Z so that ¢ is well defined. Also, if (a,bd),(c,d) €
Z & Z, then ¢(a,b) + ¢(c,d) = [ap(1,0) + bp(0,1)] + [ep(1,0) + dp(0,1)] = (a + ¢)(1,0) +
(b+ d)‘b(O? 1) = ¢((a7 b) + (C7 d)): and ¢(a,b)p(c,d) = [a¢(17 0) + b(b(O? 1)][C¢(17 O)d¢(07 1)] =
ad(1,0)ep(1,0) + adp(1,0)p(0,1)bep(0, 1)p(1,0) + bdp(0,1)p(0,1) = acp(1,0) + bdp(0,1) =
Hlac, bd) = 6((a, b)(c,d)).

4. Let A= (z* + 2 + 1) in Zg|x].
(a) Show that F = Zg[z]/A is a field.

Solution. We need to show that f(z) = 2% + x + 1 is irreducible. Clearly, f(0) = f(1) = 1.
So, f(x) has no linear factor. Suppose f(z) has a quadratic factor g(z) = z? + bz + c.



Then ¢ = 1. So, g(z) = 22 + 1 or g(z) = 22 + z + 1. Now, f(z) = (22 +1)? + 2 and
f(x) = (22 + 2+ 1)(2® + 2+ 1) + 1. Hence, f(x) is irreducible and Zs[z]/A is a field.
(b) Pair up all the elements in (F*,-) that are multiplicative inverses of each other.

Solution. We have the following pairs of mutually inverse elements: (1+A4,1+ A), (x+ A, 1+
A (P AT+ 22+ 3+ A), @B+ AL+ 22+ A), L+ o+ A r+ a2+ 23+
A,z +22+ A1+ +22+A), (e + 23+ A, 22+ 23+ A), 1+ 22+ A1+ 2+ 23+ A).
Common mistakes. Write elements in F* as polynomials 1, x instead of 1 + A,z + A, etc.
(c) Determine all the generators (with explanation) of the group (F*,-).

Solution. Note that (z + A3 =23+ A#1+Aand (v + AP =2+ A=a(z+1)+ A=
2?4+ x4+ A#1+ A We see that (z + A) has order 15, and is a generator.

Common mistake. Just say (z + A)° # 1+ A without explanation.

Furthermore, (x4 A)™ is a generator if and only gcd(m, 15) = 1. So, z+ A, (z+A)? = 22 + A,
(x+A)* =14+2+A, (2+A)7 = 1+a+234+ A, (24+A)% = 1+224+ A, (2+ AN = o422 +23 4 A,
(x+AB =1+22+2°+ A, (v + A)" = a + 2° + A are all the generators.

Common mistake. Just say that (z + A)™ is a generator if ged(m, 15) = 1 without even
writing down what the values m are.
. Let p > 2 be a prime number.

(a) Show that ¢ : Z% — Z% defined by ¢(z) = 2? is a homomorphism with ker(¢) = {1, -1},
and deduce that H = ¢(Z;) has (p — 1)/2 elements.

Solution. Evidently, if a = b then a = b+ kp and ¢(a?) = (b+ kp)? = b% + 2bp + b?p? = b2 s0
that ¢ is well defined. Further, ¢(ab) = (ab)* = a?b*> = ¢(a)¢(b) for any a,b € Z. So, ¢ is a
well-defined homomorphism on (Zj, -).

Note that € ker(¢) if and only if 22 = 1. The only solutions for the quadratic polynomial
2% — 1 in the field Z, is £1, i.e.,, 1 and p — 1. Thus, @(Zy,) is isomorphic to Zy/{1,p — 1} has
(p — 1)/2 elements.

Common mistakes. Forget to check that ¢ is well defined; no justification for no other
r € ker(¢) besides 1, —1.

(b) Show that there is a € Z, such that a? € {—1,2, —2}, i.e., the subgroup H in (a) contains
an element in {—1,2, —2}.

Solution. Let Zy/H = {H,rH} has order 2. If —1 or —2 is in H, then we have a € Z;
such that ¢(a) = a®> = —1 or —2. If —1,-2 ¢ H, then (—-1)H = (-2)H = rH. So,
2H = (—1)H(—2)H = rHrH = r?H = H. Thus, 2 € H and there is a € Zy, such that
a’=2.

(c) Show that * + 1 € Z,[z] is reducible.

If there is a®? = —1, then (22 + a)(2? — a) = 2* + 1.

If there is a? = —2, then (22 + azx — 1)(2? —azx — 1) =2* — 2+ a?)2? + 1 =2t + 1.

If there is a? = 2, then (22 +az + 1)(2? —az + 1) =2* + (2 —a®)2® + 1 =2 + 1.

(d) Show that x* + 1 is reducible in Zs|x].

We have (22 +1)(2? — 1) = 2% + 1.
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1. Show that if G is a group with no proper non-trivial subgroup and has at least two elements,
then G is isomorphic to Z, for some prime number p.

Solution. Let a € G not equal to e. Then H = (a) # {e}. So, G = (a) is cyclic. If |a| is
infinite, then (a?) is a proper subgroup of G, which is a contradiction. If |a| = n, then it must
be a prime; else (a¥) will be a proper subgroup of G for any proper factor k of n. So, G is
isomorphic to Z, for a prime n.

Common mistake. Forget to discuss the case when |a| is infinite.

2. Let ¢ : G1 — G2 be a group homomorphism, and H be a normal subgroup of G;.
(a) Show that ¢(H) is a normal subgroup of ¢(G1).
Solution. It is known that subgroups of G; are mapped to subgroups of Gs.
So, ¢(H),¢(G1) are subgroups of Gy. Evidently, ¢(H) C ¢(G1). Note that ¢(e1) = ea €
»(H) C G so that ¢(H) is non-empty. If y1,y2 € ¢(H), then there are hy, hy € H such that
¢(h1) = y1 and ¢(ha) = ya. So, yy 'y2 = (k1) d(ha) = G(hy ' hy) € G(H) as hi'hy € H.
Let H = G1. We see that ¢(G1) is a subgroup of Ga.

Clearly, ¢(H) C ¢(G1). To show that ¢(H) is a normal subgroup of ¢(G1), suppose y € ¢p(H)
and z € ¢(G1). Then there are h € H and g € G; such that ¢(h) =y and ¢(g) = z. Thus
zyzt = ¢(g9)p(h)p(g) ' = ¢p(ghg™?t) € ¢(H) as ghg~ € H. So, ¢(H) is a normal subgroup
of ¢(G1).

Common mistake. Forget to mention or check that ¢(H) is a subgroup of ¢(G;). Forget
to pick y € ¢(H) and z € ¢(G1) to check the condition zyz~! € ¢(H).

(b) Give an example to show that ¢(H) may not be a normal subgroup of Gs.

Solution. For example, let H = G| = Zg and Ga = S3. Define ¢ : G1 — G by ¢(1) = (1, 2),
the transposition. Then ¢(H) = {(1,2),e}, where ¢ is the identity in Ss, is not normal in Go
because (1,3)¢(H) = {(1,2,3),e} # {(1,3,2),e} = ¢(H)(1,3).

3. Let Ry = {a +1iV2b:a,bc Z}.
(a) Show that R; is a subring of C.

Solution. Let 0 = 0+iv/20 € R;. So, Ry is nonempty. If 21 = a1 +iﬂb1, 29 = ag+iv/2by € Ry,
then 21— %9 = (a1 — a2) + \@(bl — bg) S Rl, and 2129 = (a1a2 — 2b1b2) + \@(albz —|—(12b1) € R;.
So, R; is a subring.

(b) Show that R; is isomorphic to Ry = {(—a% Z) ta,be Z}.

Solution. Clearly, ¢(z) € Ry for every z € Ry. So, ¢ is well-defined.

a

1-1: If f(21) = f(22) = <—2b 2), then z; = 25 = a + /2bi.

Onto: For any A = (—aQb 2) € Ry, we have z = a + iv/2b € R satisfying ¢(z) = A.



Operation preserving. For any z; = a1 + V2bii, 29 = ag + iv/2by € Ry so that z129 =

aras — 2b1b2) + V2(a1by + asbhr), we have ¢(z;) = A; = @ h and ¢(z9) = Ag =
—2b1 aj
b1 + by

as bg . . a + as
(L, ). Thon o) + olea) = A1+ 4y = 53 %, TR

ai1as — 2b1by ai1by + asby
—2(&1[72 + agbl) aras — 2b1by

) = ¢(z1 + z2) and

B(21)6(z2) = Ay Ay = (

Remark This is a straight forward problem. One does not need to check that Rs is a subring.

> = ¢(z122). The result follows.

The result will imply that Ry is isomorphic to R; and hence is a subring.

Undesirable mistake. One consider z = a + iv/2b, 27!, ¢(2)!, etc. and gave some wrong
formula and cause some unnecessary deduction of points.

. (a) Show that R; = {(a,a) : a € Z} is a subring, but not an ideal of Z & Z.

Solution. Clearly, (0,0) € R; is non-empty. If (a,a),(b,b) € Ry, then (a,a) — (b,b) =
(a —b,a—0b) € Ry and (a,a)(b,b) = (ab,ab) € Ry. So, R is a subring.

Now, (1,1) € Ry and (1,0) € Z& Z, but (1,1)(1,0) = (1,0) ¢ R;. So, R; is not an ideal.

(b) Show that Ry = {(3a,5b) : a,b € Z} is an ideal of Z & Z, but not a prime ideal.
Solution. Clearly, (0,0) € Rz is non-empty. If (3a, 5b), (3¢, 5d) € Ry and (f,g) € Z & Z, then
(3a,5b) — (3¢,5d) = (3(a—c¢),5(b—d) € Ry and (3a,5b)(f,g) = (3af,bbg) € Ra. So, Ry is an
ideal.

Now, (1,0),(0,1) do not belong to Ry, but their product (0,0) lies in Ry. So, Ry is not a
prime ideal.

. Show that A = {f(x) € Z[z] : f(1) = 0} is a prime ideal but not a maximal ideal of Z[x].
Solution. Clearly, the zero polynomial g(z) = 0 lies in A so that A is nonempty.

If a(z),b(x) € A, then a(1l) = b(1) = 0. So, a(1) — b(1) = 0. Furthermore, for any a(z) € A
and c(z) € Zlz], a(1)c(1) = 0 so that a(x)c(x) € A. So, A is an ideal.

Suppose c(x),d(z) € Zlx] satisfy c(z)d(z) € A. Then ¢(1)d(1) = 0 so that ¢(1) = 0 or
d(1) = 0. Hence, c(z) or d(z) lies in A. We see that A is a prime ideal.

Now, g(x) € A if and only if ¢g(1) =0, i.e., (z — 1) is a factor of g(z). So, A = {(z — 1)q(z) :
q(z) € Zlz]}. For any h(z) € Z[z], we have h(z) = (z — 1)g(x) + h(1) with ¢ = h(1) € Z by
the factor theorem. So, Z[x]/A ={c+ A:c€ Z}. Now, if 2+ A € Z[z]/A, there is no c+ A
such that (2+ A)(c+A) =2c+ A =1+ A. So, Z[x]/A is not a field, i.e., A is not maximal.

Common mistake To construct an ideal B lying strictly between A and Z[z], one needs to
give the detailed explanation that B is an ideal, A # B and B # Z[z]. In fact, some examples
were given that B is not an ideal, B = A or B = Z|[x].



