
Math 307 Abstract Algebra Sample final examination questions with solutions

1. Suppose that H is a proper subgroup of Z under addition and H contains 18, 30 and 40,

Determine H.

Solution. Since gcd(18, 30, 40) = 2, there exists an x, y, z ∈ Z such that 18x+ 30y + 40z = 2.

In fact, one easily checks that 2 = 2 ∗ 40 − 2 ∗ 30 − 1 ∗ 18 ∈ H. So, H contains 2Z, which

is the set of all even numbers. If H contains any additional element a, it will be of the form

2k + 1. Then 1 = (2k + 1) − 2k ∈ H and H = Z. Hence, H cannot contain other elements,

and H = 2Z.

2. Let H and K be subgroups of a group G. Show that H ∪K ≤ G if and only if H ≤ K or

K ≤ H.

Solution. Let G be a group and let H,K ≤ G. Assume without loss of generality that H ≤ K,

that is H ⊆ K, which implies that H ∪K = K ≤ G.

Conversely, assume that H 6≤ K and K 6≤ H, that is H 6⊆ K and K 6⊆ H, which implies that

H ∪ K 6= K and H ∪ K 6= H. Then, there exists an h ∈ H\K and a k ∈ K\H such that

h, k ∈ H ∪K, Suppose, H ∪K were a subgroup of G. Then hk ∈ H ∪K.

Case 1. If hk ∈ H, then h−1 ∈ H and hence k = h−1(hk) ∈ H, which is a contradiction.

Case 2. If hk ∈ K, then k−1 ∈ K and hence h = (hk)k−1 ∈ K, which is a contradiction.

Thus, H ∪K cannot be a subgroup.

3. Suppose a and b are elements in a group such that |a| = 4, |b| = 2, and a3b = ba. Find |ab|.

Solution. We prove that |ab| = 2. Note that (ab)(ab) = a(ba)b = a(a3b)b = a4b2 = e. So,

|ab| = 1 or 2. If |ab| = 1, then a is the inverse of b so that 4 = |a| = |b| = 2, which is absurd.

So, |ab| = 2.

4. Let a and b belong to a group. If |a| and |b| are relatively prime, show that 〈a〉 ∩ 〈b〉 = {e}.

Solution. Suppose H = 〈a〉 = {a, a2, . . . , am} and K = 〈b〉 = {b, b2, . . . , bn}, where am = bn =

e, such that gcd(m,n) = 1. Clearly, e ∈ H ∩K. Suppose c ∈ H ∩K and |c| = k. Then k is

factor of m and also a factor of n. Thus, k = 1 and c = e.

5. Suppose G is a set equipped with an associative binary operation ∗. Furthermore, assume

that G has an left identity e, i.e., eg = g for all g ∈ G, and that every g ∈ G has an left

inverse g′, i.e., g′ ∗ g = e. Show that G is a group.

Solution. Let g ∈ G. We first show that the left inverse g′ of g is also the right inverse. To

see this, let ĝ be the left inverse of g′. Then (ĝ) = (ĝ)(g′g) = (ĝg′)g = eg = g. So, ĝ = g

satisfies e = ĝg′ = gg′.

Now, because gg′ = g′g = e, we have ge = g(g′g) = (gg′)g = g.

6. Suppose x is an element of a cyclic group of order 15 and exactly two of x3, x5, and x9 are

equal. Determine |x13|.

Solution. Let x ∈ G = 〈a〉 = {a, . . . , a15}. Clearly, |x| > 1, else e = x3 = x5 = x9. Note also

that |x| is a factor of |G| = 15. Thus, |x| ∈ {3, 5, 15}. Consider 3 cases.
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1. x3 = x5 6= x9. Then x2 = x5−3 = e. So, |x| = 2, a contradiction.

2. x3 6= x5 = x9. Then x4 = x9−5 = e so that |x| ∈ {2, 4}, a contradiction.

3. x3 = x9 6= x5. Then x6 = x9−3 = e so that |x| ∈ {2, 3, 6}. Thus, |x| = 3 and |x13| = |x| = 3.

7. Consider σ = (13256)(23)(46512).

(a) Express σ as a product of disjoint cycles. Solution. σ = (1, 2, 4)(3, 5).

(b) Express σ as a product of transpositions. Solution. σ = (1, 4)(1, 2)(3, 5).

(c) Express σ as a product minimum number of transpositions.

(Prove that the number is minimum!)

Solution. σ moves more than 5 numbers in {1, . . . , 6}. So, we need at least three transposi-

tions.

8. (a) Let α = (1, 3, 5, 7, 9, 8, 6)(2, 4, 10). What is the smallest positive integer n such that

αn = α−5?

Solution. We need to find the smallest n such that αn+5 = ε. Since |α| = lcm(5, 3) = 21, we

see that n = 16.

(b) Let β = (1, 3, 5, 7, 9)(2, 4, 6)(8, 10). If βm is a 5-cycle, what can you say about m?

Solution. Note that βm is a 5-cycle if and only if (2, 4, 6)m = (8, 6)m = ε and (1, 3, 5, 7, 9)m

is a five cycle. This happen if and only if m is a multiple of 6 = lcm(3, 2) and m is not a

multiple of 5. That is m = 6k and k is not a multiple of 5.

9. In S7 show that x2 = (1, 2, 3, 4) has no solutions, but x3 = (1, 2, 3, 4) has at least two.

Solution. Note that (x2)4 = ε. So, |x| = 1, 2, 4. Clearly, |x| 6= 1, 2, else x2 6= (1, 2, 3, 4).

If |x| = 4, then x is a 4-cycle, or the product of a 4-cycle and a 2-cycle; in either case,

x2 6= (1, 2, 3, 4).

A shorter proof is to observe that x2 = (1, 2, 3, 4) = (1, 4)(1, 3)(1, 2) is an odd permutation.

But x2 must be an even permutation for any x ∈ Sn.

Let x ∈ {(1, 4, 3, 2), (1, 4, 3, 2)(5, 6, 7)}. Then x3 = (1, 2, 3, 4).

10. Let H ≤ Sn.

(a) Show that either H ≤ An or |H ∩An| = |H|/2.

Solution. Suppose H ≤ Sn. Let S1 = H ∩An, and S2 = H − S1.

Case 1. If S2 = ∅, then H ≤ An.

Case 2. If S2 6= ∅ and g ∈ S2 is an odd permutation. Then define f : S1 → S2 by f(x) = gx.

It is well defined because for every even permutation x ∈ H, gx ∈ H is an odd permutation

and will be in S2.

It is 1-1 because f(x1) = f(x2) implies gx1 = gx2 so that x1 = x2 by cancellation.

If is onto because for every y ∈ S2, we can let x = g−1y ∈ H ∩An = S1 so that f(x) = y.

Since there is a bijection from S1 to S2, we see that |S1| = |S2|, and |H ∩ An| = |H|/2 as

asserted.
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(b) If |H| is odd, show that H ≤ An.

Solution. Since |H| is odd, it cannot be the case that |H ∩An| = |H|/2. So, H ≤ An.

11. Let G be a group. Show that φ : G→ G defined by φ(g) = g−1 is an isomorphism if and only

if G is Abelian.

Solution. Suppose G is Abelian. First, we show that φ is bijective. Clearly, if φ(a) = φ(b),

then a−1 = b−1. Taking inverse on both sides, we see that a = b; so φ is 1-1. If a ∈ G,

then φ(a−1) = a; so φ is onto. Now, by commutativity, for any a, b ∈ G. φ(ab) = (ab)−1 =

b−1a−1 = a−1b−1 = φ(a)φ(b). Thus, φ is a group isomorphism.

Conversely, suppose φ is an isomorphism. Then for any a, b ∈ G, a−1b−1 = φ(a)φ(b) =

φ(ab) = (ab)−1 = b−1a−1. Taking inverse on both sides, we see that ba = ab.

12. Let G be a group with |G| = pq, where p, q are primes. Prove that every proper subgroup of

G is cyclic. But the whole group may not be cyclic.

Solution. Let H be a proper subgroup of G. Then |H| ∈ {1, p, q}. By Homework 2, or a

corollary of Lagrange theorem, H has prime order or order 1 is cyclic.

Consider S3 of order 6. Every proper subgroup is cyclic, but S3 is not.

13. (a) Let H = 〈(1, 2)〉 ∈ S3. Write down all the left cosets of H in S3, and also the right cosets

of H in S3.

Solution. (1, 3)H = (1, 2, 3)H = {(1, 3), (1, 2, 3)}, (2, 3)H = (1, 3, 2)H = {(2, 3), (1, 3, 2)}.

H(1, 3) = H(1, 3, 2) = {(1, 3), (1, 3, 2)}, H(3, 2) = H(1, 2, 3) = {(3, 2), (1, 2, 3)}.

(b) Let nZ = {nk : k ∈ Z} ≤ Z under addition. Determine the number of left cosets

a+ nZ = {a+ x : x ∈ nZ} of nZ in Z.

Solution. The left cosets are the same as right cosets are the n sets:

[k] = k = {nx+ k : x ∈ Z}, k = 0, . . . , n− 1.

Note that for any a ∈ Z, a+ nZ = k ∈ {0, 1, . . . , n− 1} if and only if a− k is a multiple of n.

(Division algorithm creates a complete residue system for nZ.)

14. Let G be a group with |G| = pq, where p, q are primes. Prove that every proper subgroup of

G is cyclic. But the whole group may not be cyclic.

Solution. Let H be a proper subgroup of G. Then |H| ∈ {1, p, q}. By Homework 2, or a

corollary of Lagrange theorem, H has prime order or order 1 is cyclic.

Consider S3 of order 6. Every proper subgroup is cyclic, but S3 is not.

15. Let G be a group of order p2 for a prime p. Show that G is cyclic or gp = e for all g ∈ G.

Solution. Note that elements of G have orders in the set {1, p, p2}.

Case 1. There is an element a ∈ G of order p2. Then G = 〈a〉 is cyclic.

Case 2. No elements in G has order p2, then each element x in G has order 1 or p; so, xp = e.
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16. Can a group of order 55 have exactly 20 elements of order 11? Give a reason for your answer.

Solution. No. If G = 〈a〉 is cyclic, then a5k for k = 1, . . . , 10 are the only elements of order

11. If G is not cyclic then each elements in G not equal to e have order 5 or 11. If x has

order 11, then x, x2, . . . , x10 have order 11 and generate the same subgroup. If y has order 5,

then y, y2, y3, y4 have order 5 and generate the same subgroup. So, G can be partitioned into

disjoint subsets of the form

(1) {e}, (2) {x, . . . , x10}, (3) {y, y2, y3, y4}.

In particular, 55 = 1 + 5r + 4s if there are r type (2) subsets and s type (3) subsets in G.

Since there are exactly 20 elements of order 11, so r = 2. But then there is no s ∈ N such

that 55− 1− 20 = 4s.

17. Let G be a (finite) group, and H ≤ K ≤ G. Prove that

|G : H| = |G : K| |K : H|.

Prove the same result for infinite group G as long as |G : H| is finite.

Solution. Clearly, |G : H| = |G|/|H| = (|G|/|K|)(|K : H|) = |G : K| |K : H|.

Suppose G is an infinite group. Assume |G : H| = t. Then G is a disjoint union of t cosets of

H, namely, g1H, . . . , gkH. Since G = g1H ∪· · · gtH ⊆ g1K∪· · ·∪gtK, there are at most t left

cosets of K in G. Hence |G : K| is finite, say, equal to r. Also, |K : H| is finite. Otherwise,

we there is an infinite sequence of elements k1, k2, · · · ∈ K such that k1H, k2H, . . . are disjoint

cosets in K ≤ G, contradicting there are finitely many disjoint cosets in G. So, assume that

k1H, . . . , ksH are the disjoint cosets of H in K. We claim that gikjH are all the distinct

cosets of H in G. Thus, |G : H| = rs = |G : K| |K : H| as asserted.

To prove our claim, first observe that every g ∈ G lies in a giK for some i = {1, . . . , r}, so that

g = gik for some k ∈ K. But then k ∈ kjH for some j ∈ {1, . . . , s}. So, g ∈ gikjH. It remains

to show that the cosets gikjH are disjoint for 1 ≤ i ≤ r, 1 ≤ j ≤ s. Suppose by contradiction

that gikjH = gpkqH for (i, j) 6= (p, q). If i 6= p, then gikjH ∩ gpkqH ⊆ giK ∩ gpK = ∅; if

i = p but j 6= q, then kjH ∩ kqH is empty and so is gikjH ∩ gikqH. The result follows.

18. Prove that A5 has no subgroup of order 30.

Solution. Note that A5 has elements of the form in disjoint cycle decomposition:

(1) ε, (2) (i1, i2)(j1, j2) (15 of them), (3) (i1, i2, i3) (20 of them), (4) (i1, . . . , i5) (24 of them).

Suppose H ≤ A5 has order 30 and contains ni element of type (i) for i = 1, 2, 3, 4, then

30 = 1 + n2 + 2n3 + 4n4 is even. So, n2 > 0. Let σ = (i1, i2)(j1, j2) ∈ H. Consider

τ = (i1, i2, j1) ∈ A4. Then τσ ∈ τH = G − H = Hτ . Thus τστ−1 = (j1, i2)(i1, j2) ∈ H.

Similarly, τ−1στ = (j2, i2)(j1, i1) ∈ H. But then K = {ε, σ, τ−1στ, τστ−1} is a 4 element

subgroup of H, which is impossible by Lagrange Theorem.

19. Suppose G is a group of order n, and k ∈ N is relatively prime to n. Show that g : G → G

defined by g(x) = xk is one-one. If G is Abelian, show that g is an automorphism.
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Solution. Note that there are x, y ∈ Z such that nx + ky = 1. If xk = yk, then by the fact

that xn = yn = e, we have

x = xnx+ky = (xk)y = (yk)y = ynx+ky = y.

Since G is finite, the function x 7→ xk is 1-1 if and only if it is bijective. If G is Abelian, then

(xy)k = xkyk so that the map x 7→ xk is an isomorphism.

20. Show that every σ ∈ Sn is a product of the n-cycle α = (1, 2, . . . , n) and the 2-cycle τ = (1, 2).

Determine the minimum number of α and τ needed for a given σ.

Solution. Note that αkτα−k = (k + 1, k + 2) for k = 1, . . . , n − 2. Thus, we can generate

transpositions of the form (1, 2), (2, 3), . . . , (n− 1, n).

Now, (i, i+ 1)(i+ 1, i+ 2)(i, i+ 1) = (i, i+ 2); so, we get (i, i+ 2) for all i = 1, . . . , n− 2.

Next, (i, i + 1)(i + 1, i + 3)(i, i + 1) = (i, i + 3); so, we get (i, i + 3) for all i = 1, . . . , n − 3.

Repeating these arguments, we get (i, j) for all transpositions. So, we can get any σ ∈ Sn.

21. If r is a divisor of m and s is a divisor of n, find a subgroup of Zm ⊕ Zn that is isomorphic

to Zr ⊕ Zs.

Solution. Let a = m/r, b = n/s, H = {(pa, qb) : p, q ∈ Z}, and φ : Zr ⊕ Zs → H defined by

φ(p, q) = (pa, qb) is an isomorphism.

1) φ is well-defined: If (p1, q1) = (p2, q2), then p1 − p2 = ru, q1 − q2 = sv with r, s ∈ Z. So,

p1a− p2a = ura = um and q1b− q2b = svb = sn. Thus, φ(p1, q1) = (p1a, q1b) = (p2a, q2b) =

φ(p2, q2).

2) φ is one-one: If φ(p1, q1) = (p1a, q1b) = (p2a, q2b) = φ(p2, q2), then p1a− p2a = um = ura

and q1b− q2b = svb = sn with r, s ∈ Z so that p1 − p2 = ru, q1 − q2 = sv.

3) φ is onto: Suppose (pa, qb) ∈ H. Then clearly, φ(p, q) = (pa, qb).

22. (a) Prove that R⊕ R under addition in each component is isomorphic to C.

Solution. Define φ : R⊕ R→ C by φ(a, b) = a+ ib. One checks that φ is an isomorphism.

(b) Prove that R∗ ⊕ R∗ under multiplication in each component is not isomorphic to C∗.

Solution. Suppose φ : C∗ → R∗ ⊕ R∗ is an isomorphism. Then φ send identity to identity,

i.e., φ(1) = (1, 1). Then −i ∈ C has order 4, and φ(i) = (a, b) must also have order 4.

However, (1, 1) = (a, b)4 = (a4, b4) implies that a, b ∈ {1,−1}, and (a, b)2 = (1, 1), which is a

contradiction.

23. Let a = (a1, . . . , an) ∈ G1⊕· · ·⊕Gn. Determine the order of a in terms of those of a1, . . . , an.

(Infinite order is possible.)

Solution. If aj with infinite order, then the jth entries of am = (am1 , . . . , a
m
n ) is not ej for all

m ∈ N. Thus, a has infinite order. If |aj | = mj is finite for each j, and if am = (am1 , . . . , a
m
n ) =

(e1, . . . , en). Thus, m is a common multiple of m1, . . . ,mn. Evidently, m = lcm(m1, . . . ,mn)

is the smallest positive integer such that amj = ej for all j = 1, . . . , n.
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24. (a) What is the order of the element 14 + 〈8〉 in Z24/〈8〉?

Solution. Note that H = 〈8〉 = {8, 16, 0}. Then 14+H 6= H, 2(14+H) = 28+H = 12+H 6=
H, 3(14 + H) = 42 + H = 10 + H 6= H, 4(14 + H) = 56 + H = 0 + H = H. Thus, 14 + H

has order 4.

(b) What is the order of 4U5(105) in the factor group U(105)/U5(105).

Solution. Note that U5(105) = {1, 11, 16, 26, 31, 41, 46, 61, 71, 76, 86, 101}. Then [4U5(105)]2 =

16U5(105) = U5(105). Thus, 4U5(106) has order 2.

25. (a) Prove that if H ≤ G and |G : H| = 2, then H is normal.

Solution. If |G : H| = 2, then there are two left cosets H, aH with a /∈ H, and G has two

right cosets H,Ha such that aH = G−H = Ha. So, H is normal.

(b) Show that An is normal in Sn.

Solution. Since |Sn : An| = 2, An is normal in Sn.

26. Let G = Z4 ⊕ U(4), H = 〈(2, 3)〉 and K = 〈(2, 1)〉. Show that G/H is not isomorphic to

G/K.

Note that H = {(2, 3), (0, 1)} and K = {(2, 1) = (0, 1)}.

Then G/H = {(0, 1) +H, (1, 1) +H, (2, 1) +H, (3, 1) +H} isomorphic to Z4,

and G/K = {(0, 1) +K, (0, 3) +K, (1, 1) +K, (1, 3) +K} is isomorphic to Z2 ⊕ Z2.

27. Let G be a finite group, and H be a normal subgroup of G.

(a) Show that the order of aH in G/H must divide the order of a in G.

Solution. Suppose |a| = m. Then (aH)m = eH = H. So, |aH| is a factor of m.

(b) Show that it is possible that aH = bH, but |a| 6= |b|.

Solution. Suppose G = Z6, H = {0, 3}. Then 0 +H = 3 +H where |0| = 1 and |3| = 2.

28. If G is a group and |G : Z(G)| = 4, prove that G/Z(G) is isomorphic to Z2 ⊕ Z2.

Solution. If |G/Z(G)| = 4, it is isomorphic to Z4 or Z2 ⊗ Z2. If G/Z(G) is cyclic, then G is

Abelian so that G = Z(G) and |G/Z(G)| = 1, a contradiction.

29. Suppose that N / G and |G/N | = m, show that xm ∈ N for all x ∈ G.

Solution. By Lagrange theorem, (xN)m = eN = N in G/N . Thus, xm ∈ N .

30. (a) Explain why x 7→ 3x from Z12 to Z10 is not a homomorphism.

(b) Prove that there is no isomorphism from Z8 ⊕ Z2 to Z4 ⊕ Z4.

Solution. (a) In Z12, [0] = [12]. But then φ([0]) = [0] 6= [6] = [36] = φ([12]) in Z10.

(b) Note that (1, 0) has order 8 in Z8 ⊕ Z2, but φ(1, 0) ∈ Z4 ⊕ Z4 has order at most 4.

31. How many homomorphisms are there from Z20 onto Z8. How many are there to Z8?

Solution. Note that a homomorphism φ : Zm → Zn is completely determined by φ([1]m) =

[k]n with k = 0, 1, . . . , n − 1. In order that φ is well-defined, [x]m = [y]m should ensure

[kx]n = [ky]n. The condition reduces to: m|(x− y) implies n|k(x− y), equivalently, n|km. It
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will be an isomorphism if φ([i]) = [1] for some i because we can get φ([xi]) = [x] for every

x ∈ Zn.

Thus, φ([1]) is a homomorphism with φ([1]) = [k] if and only if k = 0, 2, 4, 6. Of course, none

of these homomorphisms is onto.

32. Prove that φ : Z⊕ Z→ Z by φ(a, b) = a− b is a homomorphism. Determine the kernel, and

φ−1({3}) = {(x, y) ∈ Z⊕ Z : φ(x, y) = 3}.

Solution. φ((a, b)+(c, d)) = φ(a+c, b+d) = (a+c)−(b+d) = (a−b)+(c−d) = φ(a, b)+φ(c, d)

for any (a, b), (c, d) ∈ Z⊕ Z. So, φ is an homomorphism.

Ker(φ) = {(a, b) : 0 = φ(a, b) = a− b} = {(a, a) : a ∈ Z}.

33. For each pair of positive integer m and n, show that the map from Z to Zm ⊕ Zn defined by

x 7→ ([x]m, [x]n) is a homorphism.

(a) Determine the kernel when (m,n) = (3, 4).

(b) Determine the kernel when (m,n) = (6, 4).

(c) (Extra 4 points.) Generalize the result.

Solution. The map is an homomorphism because for any a, b ∈ Z,

φ(a+ b) = ([a+ b]m, [a+ b]n) = ([a]m, [a]n) + ([b]m, [b]n) = φ(a) + φ(b).

(a) φ(x) = ([x]3, [x]4) = ([0], [0]) if and only if 3|x and 4|x. So, Ker(φ) = {12k : k ∈ Z}.

(b) φ(x) = ([x]6, [x]4) = ([0], [0]) if and only if 6|x and 4|x. So, Ker(φ) = {12k : k ∈ Z}.

(c) φ(x) = ([x]m, [x]n) = ([0], [0]) if and only if m|x and n|x. So, Ker(φ) = {`k : k ∈ Z},
where ` = lcm(m,n).

34. (Optional.) Suppose K ≤ G and N / G. Show that KN/N is isomorphic to K/(K ∩N).

Solution. First, note that KN is a subgroup. Reason: e ∈ KN is non-empty; if k1n1, k2n2 ∈
KN then by the normality of N (k1n1)(k2n2)

−1 = k1n1n
−2
2 k−12 = k1n3k

−1
2 = k1k

−1
2 n4 =

k3n4 ∈ KN for some n3, n4 ∈ N and k3 ∈ K.

Second, note that K ∩N is normal in K because k(K ∩N)k−1 = kKk−1 ∩ kNk−1 = K ∩N
for any k ∈ K.

Third, note that N is normal in KN because (kn)N(kn)−1 = knNn−1k−1 = N for any

kn ∈ KN .

Define φ : KN/N → K/(K ∩N) by φ(knN) = φ(kN) = k(K ∩N) for any kn ∈ KN .

It is well-defined: If k1n1 = k2n2, then k−12 k1 = n2n
−1
1 ∈ K∩N so that k1(K∩N) = k2(K∩N).

It is 1-1: Note that all elements in KN/N has the form (kn)N = kN . If φ(k1N) = φ(k2N)

then k1(K ∩N) = k2(K ∩N). Thus, k−12 k1 ∈ K ∩N ⊆ N . Thus, k1N = k2N .

It is onto because for any k(K ∩N) in K/(K ∩N), we have φ(kN) = k(K ∩N).

Now, Φ((k1N)(k2N)) = φ(k1k2N) = k1k2(K ∩N) = k1(K ∩N)k2(K ∩N) = φ(k1N)φ(k2N).
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35. (a) Let G be the group of nonzero real numbers under multiplication. Suppose r is a positive

integer. Show that x 7→ xr is a homomoprhism. Determine the kernel, and determine r so

that the map is an isomorphism.

(b) Let G be the group of polynomial in x with real coefficients. Define the map p(x) 7→
P (x) =

∫
p(x) such that P (0) = 0. Show that f is an homomorphism, and determine its

kernel.

Solution. (a) Evidently, φ is well-defined and φ(xy) = xryr = φ(x)φ(y) for all x, y ∈ R∗. So,

φ is an homomorphism. Now, φ(x) = xr = 1 if and only if (i) x = 1 or (ii) r is even and

x = −1. So, Ker(φ) = {1} if r is odd, and Ker(φ) = {1,−1} if r is even.

If r is even, then Ker(φ)| > 1 so that φ is not injective and therefore not bijective.

If r is odd, then φ is one-one and every x 6= 0 has a unique real root x1/r. So, φ is an

isomorphism.

(b) Let p(x) = a0 + · · ·+ anx
n. Because we assume that φ(p(x)) = P (x) such that P (0) = 0,

we have φ(p(x)) = a0x+ a1x
2/2 + · · ·+ anx

n+1/(n+ 1). Suppose p(x) and q(x) are two real

polynomial. Then φ(p(x) + q(x)) =
∫

(p(x) + q(x)) =
∫
p(x) +

∫
q(x) = φ(p(x)) + φ(q(x)).

Here the integration constant is always 0 by assumption.

If p(x) is not the zero polynomial of degree n ≥ 0, then
∫
p(x) has degree n + 1 is nonzero.

Thus, Ker(φ) contains only the zero polynomial.

36. Show that if φ : G1 → G2 is an homomorphism, and K is a normal subgroup of G2, then

φ−1(K) is a normal subgroup of G1.

Proof. It follows from the classnote, or the proof in the book. Let K be normal in G2 and

H = φ−1(K) in G1. Then for any a ∈ G1, consider aHa−1. Since

φ(aHa−1) = {φ(a)φ(h)φ(a)−1 : h ∈ H} = φ(a)Kφ(a)−1 = K

by the normality of K in G2, we see that H = φ−1(K) = aHa−1. So, H is normal in G1.

37. (a) Determine all homomorphisms from Zn to itself.

(b) Find a homomorphism from U(30) to U(30) with kernel {1, 11} and φ(7) = 7.

Solution. (a) Suppose φ(1) = k ∈ Zn. For φ to be well-defined, we need a = b in Zn, i.e.,

n|(a− b) implies that ka = kb in Zn, which is always true. So, there are n homomorphisms.

(b) Note that U(30) = {1, 7, 11, 13, 17, 19, 23, 29} = 〈7〉×〈11〉. Given φ(7) = 7 and φ(11) = 1,

the homomorphism is completely determined. It is a 2 to 1 map such that φ(1) = φ(11) = 1,

φ(7) = φ(17) = 7, φ(13) = φ(23) = 13, φ(19) = φ(29) = 19.

38. Let p be a prime. Determine the number of homomorphisms from Zp ⊕ Zp to Zp.

Solution. If φ is a homomorphism such that φ(1, 0) = x and φ(0, 1) = y, then φ(a, b) =

aφ(1, 0) + bφ(0, 1) = ax + by. For each choice of (x, y) ∈ Zp,Zp, (a1, b1) = (a2, b2) implies

that p|(a1 − a2) and p|(b1 − b2). So, p|(a1x + b1y − a2x − b2y). Thus, φ is well-defined, and

satisfies φ((a, b) + (c, d)) = (a+ c)x+ (b+ d)y = φ(a, b) + φ(c, d). So, φ is a homomorphism.

Hence, there are p2 choices.
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39. Show that if M and N are normal subgroup of G and N ≤ M , then (G/N)/(M/N) is

isomorphic to G/M .

Solution. Consider φ : G/N → G/M defined by φ(gN) = gM .

To show that g is well-defined, let g1N = g2N in G/N . Then g−11 g2 ∈ N ≤ M . Then

g1M = g2M .

To show that g is a homomorphism, note that for any g1N, g2N ∈ G/N , φ(g1Ng2N) =

φ(g1g2N) = g1g2M = g1Mg2M = φ(g1N)φ(g2N).

To show that g is surjective, let gM ∈ G/M , then φ(gN) = gM .

Consider the kernel of φ, we have φ(gN) = gM = M if and only if g ∈M , i.e., gN ∈M/N =

{mN : m ∈M}.

Now the image of φ is isomorphic to (G/N)/Ker(φ), the result follows.

40. (a) Give an example of a subset of a ring that is a subgroup under addition but not a subring.

(b) Give an example of a finite non-commutative ring.

Solution. (a) Let H = 〈(2, 3)〉 ∈ Z ⊕ Z. Then H = {(2k, 3k) : k ∈ Z} is a subgroup under

addition. But (2, 3)(2, 3) = (4, 9) /∈ H.

(b) Let R = M2(Z2). Then there are 24 elements because each entries has two choices.

Clearly, AB 6= BA if A = Bt =

(
0 1
0 0

)
.

41. Show that if m,n are integers and a, b are elements in a ring. Then (ma)(nb) = (mn)(ab).

Solution. If m or n is zero, then both sides equal 0. If m,n ∈ N, then

(a+ · · ·+ a︸ ︷︷ ︸
m

)(b+ · · ·+ b︸ ︷︷ ︸
n

) = (ab+ · · ·+ ab︸ ︷︷ ︸
mn

) = (mn)(ab).

If m is negative and n is positive, then (ma)(nb) + (|m|a)(nb) = ((m + |m|)a)(nb) = 0 so

that (ma)(nb) = −(|m|n)(ab) = (mn)(ab). Similarly, if m is positive and n is negative,

then (ma)(nb) = (mn)(ab). Finally, if m,n are negative, then (ma)(nb) = (−|m|a)(−|n|b) =

|mn|(ab) = (mn)(ab).

42. Let R be a ring.

(a) Suppose a ∈ R. Shown that S = {x ∈ R : ax = xa} is a subring.

(b) Show that the center of R defined by Z(R) = {x ∈ R : ax = xa for all a ∈ R} is a subring.

Solution. (a) Note that 0 ∈ S is non-empty. Suppose x, y ∈ S. Then ax = xa and ay = ya.

So, a(x − y) = ax − ay = xa − ya = (x − y)a. So, x − y ∈ S. Also, a(xy) = (xa)y = (xy)a.

So, xy ∈ S. It follows that S is a subring.

(b) Note that 0 ∈ S is non-empty. Suppose x, y ∈ Z(R). Then ax = xa and ay = ya.

So, a(x − y) = ax − ay = xa − ya = (x − y)a for any a ∈ R. So, x − y ∈ Z(R). Also,

a(xy) = (xa)y = (xy)a for any a ∈ R. So, xy ∈ Z(R). It follows that Z(R) is a subring.

43. Let R be a ring.

(a) Prove that R is commutative if and only if a2 − b2 = (a+ b)(a− b) for all a, b ∈ R.
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(b) Prove that R is commutative if a2 = a for all a ∈ R.

Solution. (a) If R is commutative, then (a + b)(a − b) = a2 + ab − ba − b2 = a2 − b2 for

any a, b ∈ R. Suppose (a + b)(a − b) = a2 + ab − ba − b2 = a2 − b2 for any a, b ∈ R. Then

ab− ba = 0, i.e., ab = ba.

(b) Suppose a2 = a for all a ∈ R. Then for any a, b ∈ R, a2 +b2 = a+b = (a+b)2 = a2 +ab+

ba+ b2 so that ab+ ba = 0. Hence, ab = −ba so that ab = (ab)2 = (−ba)2 = (−1)2(ba)2 = ba.

44. Show that every nonzero element of Zn is a unit (element with multiplicative inverse) or a

zero-divisor.

Solution. Let k ∈ Zn be nonzero. If gcd(k, n) = d, then for m = n/d 6= 0 in Zn, we have

km = rn = 0 for some r ∈ Z. So, k (also, m) is a zero divisor. If gcd(k, n) = 1, then by

the Euclidean algorithm, there are x, y ∈ Z such that kx + ny = 1. Thus, in Zn we have

1 = kx+ ny = kx. Thus, x ∈ Zn satisfies kx = 1. So, k is a unit.

45. (a) Given an example of a commutative ring without zero-divisors that is not an integral

domain.

(b) Find two elements a and b in a ring such that a, b are zero-divisors, a+ b is a unit.

Solution. (a) Let R = 2Z. Then R has is a commutative ring without zero-divisors. But R

has no unit. So, R is not an integral domain.

(b) Consider 2, 3 ∈ Z6. Then 2, 3 are zero-divisors, and 2 + 3 = 5 is a unit as 52 = 1.

46. (a) Give an example to show that the characteristic of a subring of a ring R may be different

from that of R.

(b) Show that the characteristic of a subdomain of an integral domain D is the same as that

of D.

Solution. (a) Consider Z4 and S = {0, 2} ⊆ Z4. Then char(Z4) = 2 and char(S) = 2.

(b) Suppose D′ is a subdomain of D with unity 1. Then D′ has a unity 1′. Note that1′ = 1 ·1′
in D, and 1′ · 1′ = 1′ in D′. So, 1′ · 1′ = 1 · 1′ and 1 = 1′ by cancellation. So, char(D) =

char(D′) = |1|.

47. An element a of a ring R is nilpotent if an = 0 for some n ∈ N.

(a) Show that if a and b are nilpotent elements of a commutative ring, then a + b is also

nilpotent.

(b) Show that a ring R has no nonzero nilpotent element if and only if 0 is the only solution

of x2 = 0 in R.

Solution. (a) Suppose an = 0 = bm with n,m ∈ N. Because R is commutative, the Binomial

theorem applies and

(a+ b)n+m =

n+m∑
j=0

(
n+m

j

)
ajbm+n−j = 0

by the fact that aj = 0 or bn+m−j = 0 depending on j ≥ n or j < n.

(b) If there is a nonzero x ∈ R satisfies x2 = 0, then x is a nilpotent. If y ∈ R is a nonzero

nilpotent and k > 1 is the smallest positive integer such that yk = 0, then x = yk−1 satisfies

x2 = y2k−2 = ykyk−2 = 0.
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48. Show that the set of all nilpotent elements of a communtative ring is an ideal.

Solution. Let A be the set of nilpotent elements of a commutative ring R. First, 0 ∈ A; if

x, y ∈ A so that xn = 0 = ym, then (x−y)m+n = 0 by the same proof as in (a) of the previous

question. Thus, x− y ∈ A. Moreover, if z ∈ R, then (xz)n = xnzn = 0. So, A is an ideal.

49. (a) Given an example to show that a factor ring of an integral domain may have zero-divisors.

(b) Give an example to show that a factor ring of a ring with zero-divisors may be an integral

domain.

Solution. (a) Let R = Z and S = 4Z. Then R/S is isomorphic to Z4, which has zero divisors.

(b) Let R = Z4 and S = {0, 2}. Then R has zero divisor 2, and R/S is isomorphic to Z2 has

no zero divisors.

50. Suppose R is a commutative ring with unity and charR = p, where p is a prime. Show that

φ : R→ R defined by φ(x) = xp is a ring homomorphism.

Solution. Note that for k = 1, . . . , p−1,
(
p
k

)
= p!/(k!(p−k)!) is divisible by p. Thus, φ(x+y) =

(x+ y)p =
∑p

j=0

(
p
j

)
xjyp−j = xp + yp = φ(x) + φ(y), and φ(xy) = (xy)p = xpyp = φ(x)φ(y).

So, φ is a ring homomophism.

51. Let R1 and R2 be rings, and φ : R1 → R2 be a ring homomorphism such that φ(R) 6= {0′}.
(a) Show that if R1 has unity and R2 has no zero-divisors, then φ(1) is a unity of R2.

(b) Show that the conclusion in (a) may fail if R2 has zero-divisors.

Solution. (a) Let φ(x) = y be nonzero in R2. Then φ(1)2φ(x) = φ(x) = φ(1)φ(x). Thus,

φ(1)2 = φ(1) and φ(1) 6= 0. For any z ∈ R2, φ(1)2z = φ(1)z so that φ(1)z = z, and

zφ(1) = zφ(1)2 so that z = zφ(1). The result follows.

(b) Suppose φ : Z → Z ⊕ Z such that φ(n) = (n, 0). Then φ(1) = (1, 0) is not the unity in

Z⊕ Z.

52. Let R1 and R2 be rings, and φ : R1 → R2 be a ring homomorphism.

(a) Show that if A is an ideal of R1, then φ(A) is an ideal of φ(R1).

(b) Give an example to show that φ(A) may not be an ideal of R2.

(c) (Optional, extra 2 points) Show that if B is an ideal of R2, then φ−1(B) is an ideal of R1.

Solution. (a) Suppose A is an ideal in R1. Then 0 ∈ R1, for any a1, a2 ∈ A and x ∈ R1,

a1 − a2, a1y, ya1 ∈ A. Thus, for any b1, b2 ∈ φ(A) and y ∈ φ(R1), we have a1, a2 ∈ A

and x ∈ R1 such that φ(a1) = b1, φ(a2) = b2 and φ(x) = y so that b1 − b2 = φ(a1) −
φ(a2) = φ(a1 − a2), b1y = φ(a1)φ(x) = φ(a1x), yb1 = φ(x)φ(a1) = φ(xa1) ∈ φ(A). Thus,

b1 − b2, b1y, yb1 ∈ φ(A). Hence φ(A) is an ideal in φ(R1).

(b) Consider φ : R → M2(R) defined by φ(x) =

(
x 0
0 0

)
. Then φ is a ring homomorphism,

and φ(R) is not an ideal.

(c) Suppose B is an ideal in R2. Then 0′ ∈ R2, for any b1, b2 ∈ B and y ∈ R2, b1−b2, b1y, yb1 ∈
B. Now, for any a1, a2 ∈ φ−1(B) and x ∈ R1, we have φ(a1), φ(a2) ∈ B and φ(x) ∈ R2 so

that φ(a1 − a2) = φ(a1) − φ(a2), φ(a1x) = φ(a1)φ(x), φ(xa1) = φ(x)φ(a1) ∈ B. Thus,

a1 − a2, a1x, xa1 ∈ φ−1(B). Hence φ−1(B) is an ideal in R1.
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53. If φ : R→ S is a ring homomorphism, prove that the map φ̄ : R[x]→ S[x] defined by

φ̄(a0 + · · ·+ anxn) = φ(a0) + · · ·+ φ(an)xn

is a ring homomorphism.

Solution. Let f(x) = a0 + · · · + anx
n, g(x) = b0 + · · · + bmx

m. We may assume m = n by

adding terms of the form 0xk to the polynomial with lower degree. Then

φ̄(f(x) + g(x)) = φ(a0 + b0) + · · ·+ φ(an + bn)xn

= [φ(a0) + · · ·+ φ(an)xn] + [φ(b0) + · · ·+ φ(bn)xn] = φ̄(f(x)) + φ̄(g(x)).

Also f(x)g(x) =
∑2n

k=0 ckx
k with ck =

∑
i+j=k aibj for k = 0, . . . , 2n. So,

φ̄(f(x))φ̄(g(x)) =
(∑

φ(ai)x
i
)(∑

φ(bj)x
j
)

= c̃kx
k

such that c̃k =
∑

i+j=k φ(ai)φ(bj) = φ(
∑

i+j=k aibj) = φ(ck) for k = 0, . . . , 2n. Thus,

φ̄(f(x))φ̄(g(x)) = φ̄(f(x)g(x)).

54. Let D be an integral domain.

(a) Show that for any two nonzero polynomials f(x), g(x) ∈ D[x]. Show that

deg(f(x)g(x)) = deg(f(x)) + deg(g(x)).

(b) Show that a nonconstant polynomial in D[x] has no multiplicative inverse.

Solution. (a) Let f(x) = a0 + · · · + anx
n, g(x) = b0 + · · · + bmx

m with an 6= 0 and bm 6= 0.

Then f(x)g(x) =
∑m+n

k=0 ckx
k with ck =

∑
i+j=k aibj for k = 0, . . . ,m + n. In particular,

cm+n = anbm 6= 0 in D. Thus, deg(fg) = deg(f) deg(g).

(b) Suppose f(x) has degree n ≥ 1. Then for any nonzero g(x) ∈ D[x], f(x)g(x) has degree

at least n by part (a). Thus, g(x) cannot be an inverse of f(x) in D[x].

55. Find an multiplicative inverse of 2x+ 1 in Z4[x], AND prove that the inverse is unique.

Solution. Suppose f(x) = 2x+ 1. Then f(x)f(x) = 4x2 + 4x+ 1 = 1 ∈ Z4[x]. Thus, f(x) is

the inverse of itself. Suppose g(x) = b0 + · · ·+ bmx
m satisfies

1 = f(x)g(x) = (b0 + · · ·+ bmx
m) + 2x(b0 + · · ·+ bmx

m).

Then b0 = 1, 2bm = 0, and bi +2bi−1 = 0 for i = m, . . . , 1. We have b0 = 1, b1 = 2, and bi = 0

for i = 2, . . . ,m. Thus, g(x) = f(x).

56. Let F be a field and p(x) ∈ F[x]. Suppose f(x) and g(x) has degrees less than p(x). Then

f(x) + 〈p(x)〉 6= g(x) + 〈p(x)〉

if and only if f(x) 6= g(x).

Solution. If f(x) 6= g(x), then f(x) − g(x) is nonzero and not a multiple of p(x). So,

f(x)− g(x) /∈ 〈p(x)〉. Thus, f(x) + 〈p(x)〉 6= g(x) + 〈p(x)〉.
The converse is clear.

12


