Math 307 Abstract Algebra Sample final examination questions with solutions

1. Suppose that H is a proper subgroup of Z under addition and H contains 18,30 and 40,
Determine H.

Solution. Since ged(18,30,40) = 2, there exists an z,y, z € Z such that 18z 4 30y + 40z = 2.
In fact, one easily checks that 2 =2 %40 — 2% 30 — 1% 18 € H. So, H contains 2Z, which
is the set of all even numbers. If H contains any additional element a, it will be of the form
2k + 1. Then 1 = (2k+1) — 2k € H and H = Z. Hence, H cannot contain other elements,
and H = 27Z.

2. Let H and K be subgroups of a group G. Show that H UK < G if and only if H < K or
K <H.

Solution. Let G be a group and let H, K < G. Assume without loss of generality that H < K,
that is H C K, which implies that H U K = K < G.

Conversely, assume that H £ K and K £ H, that is H ¢ K and K ¢ H, which implies that
HUK # K and HU K # H. Then, there exists an h € H\K and a k € K\H such that
h,k € HU K, Suppose, H U K were a subgroup of G. Then hk € HU K.

Case 1. If hk € H, then h™! € H and hence k = h™1(hk) € H, which is a contradiction.

Case 2. If hk € K, then k~! € K and hence h = (hk)k~! € K, which is a contradiction.
Thus, H U K cannot be a subgroup.

3. Suppose a and b are elements in a group such that |a| = 4, |b| = 2, and a®b = ba. Find |ab|.
Solution. We prove that |ab| = 2. Note that (ab)(ab) = a(ba)b = a(a®b)b = a*b?* = e. So,
|ab] =1 or 2. If |ab| = 1, then a is the inverse of b so that 4 = |a| = |b| = 2, which is absurd.
So, |ab| = 2.

4. Let a and b belong to a group. If |a| and |b| are relatively prime, show that (a) N (b) = {e}.
Solution. Suppose H = (a) = {a,a?,...,a™} and K = (b) = {b,b?,...,b"}, where a™ = b" =
e, such that ged(m,n) = 1. Clearly, e € HN K. Suppose ¢ € HN K and |c| = k. Then k is
factor of m and also a factor of n. Thus, k=1 and ¢ = e.

5. Suppose G is a set equipped with an associative binary operation x. Furthermore, assume
that G has an left identity e, i.e., eg = ¢ for all ¢ € G, and that every ¢ € G has an left
inverse ¢', i.e., ¢’ * g = e. Show that G is a group.

Solution. Let g € G. We first show that the left inverse ¢’ of ¢ is also the right inverse. To
see this, let g be the left inverse of ¢’. Then () = (§)(¢'g) = (99')g = eg =g. So, g =g
satisfies e = gg’ = g4g’.
Now, because g¢' = ¢'g = e, we have ge = g(¢'g) = (9¢")g = g.

6. Suppose z is an element of a cyclic group of order 15 and exactly two of z3, 2%, and 2 are
equal. Determine |z13|.

Solution. Let z € G = (a) = {a,...,a'®}. Clearly, |z| > 1, else e = 23 = 2% = 2. Note also
that |z| is a factor of |G| = 15. Thus, |z| € {3,5,15}. Consider 3 cases.
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1. 23 = 2% # 29 Then 22 = 2°73 = e. So, |z| = 2, a contradiction.
2. 23 # x5 = 2°. Then 2% = 2975 = ¢ so that |x| € {2,4}, a contradiction.

3. 23 =29 # 25 Then 2° = 2973 = e so that |z| € {2,3,6}. Thus, |z| = 3 and |2'3| = |z| = 3.

Consider o = (13256)(23)(46512).

(a) Express ¢ as a product of disjoint cycles. Solution. o = (1,2,4)(3,5).

(b) Express o as a product of transpositions. Solution. ¢ = (1,4)(1,2)(3,5).

(c) Express o as a product minimum number of transpositions.

(Prove that the number is minimum!)

Solution. ¢ moves more than 5 numbers in {1,...,6}. So, we need at least three transposi-
tions.

(a) Let « = (1,3,5,7,9,8,6)(2,4,10). What is the smallest positive integer n such that
a =a?

Solution. We need to find the smallest n such that o™ = . Since |a| = lem(5,3) = 21, we
see that n = 16.

(b) Let 8 =(1,3,5,7,9)(2,4,6)(8,10). If 5™ is a 5-cycle, what can you say about m?
Solution. Note that 8™ is a 5-cycle if and only if (2,4,6)™ = (8,6)"™ = ¢ and (1,3,5,7,9)™
is a five cycle. This happen if and only if m is a multiple of 6 = lem(3,2) and m is not a
multiple of 5. That is m = 6k and k is not a multiple of 5.

. In S; show that 2 = (1,2, 3, 4) has no solutions, but 23 = (1,2, 3,4) has at least two.

Solution. Note that (2)* = ¢. So, |z| = 1,2,4. Clearly, |z| # 1,2, else 22 # (1,2,3,4).
If |z| = 4, then x is a 4-cycle, or the product of a 4-cycle and a 2-cycle; in either case,
2?2 #(1,2,3,4).

A shorter proof is to observe that #2 = (1,2,3,4) = (1,4)(1,3)(1,2) is an odd permutation.
But 22 must be an even permutation for any x € S,,.

Let z € {(1,4,3,2),(1,4,3,2)(5,6,7)}. Then 23 = (1,2,3,4).

Let H < 5,,.

(a) Show that either H < A, or |H N A,| = |H|/2.

Solution. Suppose H < S,,. Let Sy = HNA,, and So = H — 5.

Case 1. If Sy = (), then H < A,,.

Case 2. If S5 # () and g € Sy is an odd permutation. Then define f : S; — So by f(z) = gz.

It is well defined because for every even permutation z € H, gr € H is an odd permutation
and will be in Ss.

It is 1-1 because f(x1) = f(x2) implies gx1 = gzo so that x1 = x4 by cancellation.
If is onto because for every y € Sz, we can let x = g~ 'y € HN A, = Sy so that f(z) = .

Since there is a bijection from S} to Sa, we see that [S1| = |S2|, and |H N A,| = |H|/2 as
asserted.
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(b) If |H| is odd, show that H < A,,.

Solution. Since |H]| is odd, it cannot be the case that |[H N A,| = |H|/2. So, H < A,,.

Let G be a group. Show that ¢ : G — G defined by ¢(g) = g~ ! is an isomorphism if and only
if G is Abelian.

Solution. Suppose G is Abelian. First, we show that ¢ is bijective. Clearly, if ¢(a) = ¢(b),
then a=! = b~!. Taking inverse on both sides, we see that a = b; so ¢ is 1-1. If a € G,
then ¢(a™!) = a; so ¢ is onto. Now, by commutativity, for any a,b € G. ¢(ab) = (ab)™! =
b~ la=! =a'b~! = ¢(a)p(b). Thus, ¢ is a group isomorphism.

Conversely, suppose ¢ is an isomorphism. Then for any a,b € G, a 'b™! = ¢(a)p(b) =
#(ab) = (ab)~™' = b~la~!. Taking inverse on both sides, we see that ba = ab.

Let G be a group with |G| = pq, where p, ¢ are primes. Prove that every proper subgroup of
G is cyclic. But the whole group may not be cyclic.

Solution. Let H be a proper subgroup of G. Then |H| € {1,p,q}. By Homework 2, or a
corollary of Lagrange theorem, H has prime order or order 1 is cyclic.

Consider S3 of order 6. Every proper subgroup is cyclic, but S5 is not.

(a) Let H = ((1,2)) € S3. Write down all the left cosets of H in S5, and also the right cosets
of H in Sj.

Solution. (1,3)H = (1,2,3)H = {(1,3). (1,2,3)}, (2,3)H = (1,3,2)H = {(2.3), (1,3,2)}.
H(1,3)=H(1,3,2) ={(1,3),(1,3,2)}, H(3,2) = H(1,2,3) = {(3,2),(1,2,3)}.

(b) Let nZ = {nk : k € Z} < Z under addition. Determine the number of left cosets
a+nZ={a+z:x€nl}of nZin Z.

Solution. The left cosets are the same as right cosets are the n sets:
k] =k ={nx+k:xcZ} E=0,...,n—1

Note that for any a € Z, a+nZ =k € {0,1,...,n— 1} if and only if a — k is a multiple of n.
(Division algorithm creates a complete residue system for nZ.)

Let G be a group with |G| = pq, where p, ¢ are primes. Prove that every proper subgroup of
G is cyclic. But the whole group may not be cyclic.

Solution. Let H be a proper subgroup of G. Then |H| € {1,p,q}. By Homework 2, or a
corollary of Lagrange theorem, H has prime order or order 1 is cyclic.

Consider S3 of order 6. Every proper subgroup is cyclic, but S5 is not.

Let G be a group of order p? for a prime p. Show that G is cyclic or gP = e for all g € G.
Solution. Note that elements of G have orders in the set {1, p, p*}.
Case 1. There is an element a € G of order p?. Then G = (a) is cyclic.

Case 2. No elements in G has order p?, then each element z in G has order 1 or p; so, 2P = e.
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Can a group of order 55 have exactly 20 elements of order 11?7 Give a reason for your answer.

Solution. No. If G = (a) is cyclic, then a®* for k = 1,...,10 are the only elements of order
11. If G is not cyclic then each elements in G not equal to e have order 5 or 11. If x has

2 ..., 2" have order 11 and generate the same subgroup. If i has order 5,

order 11, then z,z
then vy, 42, >, y* have order 5 and generate the same subgroup. So, G can be partitioned into

disjoint subsets of the form

(1) {e}, (2) {xv"wxlo}v (3) {y7y27y3’y4}.

In particular, 55 = 1 + 57 + 4s if there are r type (2) subsets and s type (3) subsets in G.
Since there are exactly 20 elements of order 11, so r = 2. But then there is no s € N such
that 55 — 1 — 20 = 4s.

Let G be a (finite) group, and H < K < G. Prove that
|G:H|=|G:K||K:H|.

Prove the same result for infinite group G as long as |G : H| is finite.

Solution. Clearly, |G : H| = |G|/|H| = (|G|/|K|)(|K : H|) = |G : K||K : H|.

Suppose G is an infinite group. Assume |G : H| = t. Then G is a disjoint union of ¢ cosets of
H,namely, g1H,...,gxH. Since G =g HU---gsH C g1KU---Ug K, there are at most ¢ left
cosets of K in G. Hence |G : K| is finite, say, equal to r. Also, |K : H| is finite. Otherwise,
we there is an infinite sequence of elements ki, ko, - - - € K such that k1 H, ko H, ... are disjoint
cosets in K < G, contradicting there are finitely many disjoint cosets in G. So, assume that
k1H,... ksH are the disjoint cosets of H in K. We claim that g;k;H are all the distinct
cosets of H in G. Thus, |G : H| =rs = |G : K||K : H| as asserted.

To prove our claim, first observe that every g € G lies in a g; K for some i = {1,...,r}, so that
g = g;k for some k € K. But then k € k;H for some j € {1,...,s}. So, g € g;k;H. It remains
to show that the cosets g;k; H are disjoint for 1 <7 <r,1 < j <s. Suppose by contradiction
that g;k;H = gpkyH for (i,j) # (p,q). If ¢ # p, then g;k;H N gpkeH C ¢:K N g K = 0; if
i = p but j # ¢, then k;H N kyH is empty and so is g;k;H N g;kqH. The result follows.

Prove that As has no subgroup of order 30.

Solution. Note that As has elements of the form in disjoint cycle decomposition:
(1) g, (2) (il,iQ)(jl,jQ) (15 of them), (3) (’il,ig, i3) (20 of them), (4) (il, R ,’i5) (24 of them).

Suppose H < As has order 30 and contains n; element of type (i) for ¢ = 1,2,3,4, then
30 = 1+ ng + 2n3 + 4ny is even. So, ng > 0. Let o = (i1,42)(j1,j2) € H. Consider
7 = (i1,49,51) € As. Then 70 € TH = G — H = Hr. Thus o7~ ! = (j1,42)(i1,j2) € H.
Similarly, 7707 = (j2,42)(j1,41) € H. But then K = {¢,0,7}
subgroup of H, which is impossible by Lagrange Theorem.

or,ToT 1} is a 4 element

Suppose G is a group of order n, and k € N is relatively prime to n. Show that ¢ : G — G
defined by g(x) = x* is one-one. If G is Abelian, show that ¢ is an automorphism.
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Solution. Note that there are z,y € Z such that nz + ky = 1. If 2% = y*, then by the fact
that 2" = y™ = e, we have

T = Inm+ky — (xk)y — (yk)y _ ynz+ky = y.

Since G is finite, the function = + ¥ is 1-1 if and only if it is bijective. If G is Abelian, then
(zy)* = 2%y* so that the map = ~ ¥ is an isomorphism.

Show that every o € S, is a product of the n-cycle « = (1,2, ...,n) and the 2-cycle 7 = (1, 2).
Determine the minimum number of o and 7 needed for a given o.

Solution. Note that ofra=* = (k+1,k+2) for k=1,...,n— 2. Thus, we can generate
transpositions of the form (1,2),(2,3),...,(n —1,n).

Now, (i,i+ 1)(i + 1,9+ 2)(3,i+ 1) = (4,7 + 2); so, we get (4,4 +2) foralli=1,...,n —2.
Next, (i,i+ 1)(i + 1,9+ 3)(¢,i + 1) = (i, + 3); so, we get (i,i+3) foralli =1,...,n — 3.
Repeating these arguments, we get (i, j) for all transpositions. So, we can get any o € S,.
If r is a divisor of m and s is a divisor of n, find a subgroup of Z,, ® Z, that is isomorphic
to Z, @ Zs.

Solution. Let a = m/r,b=n/s, H = {(pa,¢b) : p,q € Z}, and ¢ : Z, & Zs — H defined by
o(p,q) = (pa, gb) is an isomorphism.

1) ¢ is well-defined: If (p1,q1) = (p2,q2), then p1 — p2 = ru,q1 — g2 = sv with r,s € Z. So,
pia — pea = ura = um and q1b — g2b = svb = sn. Thus, ¢(p1,q1) = (p1a, 1b) = (p2a, g2b) =
d)(pZa (IQ)

2) ¢ is one-one: If ¢(p1,q1) = (p1a, q1b) = (p2a, g2b) = P(p2, ¢2), then pra — poa = um = ura
and q1b — g2b = svb = sn with r, s € Z so that p; — ps = ru,q1 — g2 = sv.

3) ¢ is onto: Suppose (pa,gb) € H. Then clearly, ¢(p, q) = (pa, qb).

(a) Prove that R @ R under addition in each component is isomorphic to C.
Solution. Define ¢ : R@® R — C by ¢(a,b) = a + ib. One checks that ¢ is an isomorphism.
(b) Prove that R* @ R* under multiplication in each component is not isomorphic to C*.

Solution. Suppose ¢ : C* — R* @ R* is an isomorphism. Then ¢ send identity to identity,
ie, ¢(1) = (1,1). Then —i € C has order 4, and ¢(i) = (a,b) must also have order 4.
However, (1,1) = (a,b)* = (a*,b*) implies that a,b € {1,—1}, and (a,b)? = (1,1), which is a
contradiction.

Let a = (a1,...,a,) € G1®---®G,. Determine the order of a in terms of those of ay, ..., ay.
(Infinite order is possible.)

Solution. If a; with infinite order, then the jth entries of a™ = (af*,...,qa}}') is not e; for all
m € N. Thus, a has infinite order. If |a;| = m; is finite for each j, and if "™ = (af*,...,a}}) =
(e1,...,€en). Thus, m is a common multiple of my, ..., m,. Evidently, m = lem(my,...,m,
is the smallest positive integer such that a7* =e; for all j =1,...,n.
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(a) What is the order of the element 14 + (8) in Zag/(8)?

Solution. Note that H = (8) = {8,16,0}. Then 14+ H # H, 2(14+ H) =28+ H = 12+ H #
H, 3014+ H)=42+H =10+ H # H, 414+ H) =56 + H = 0+ H = H. Thus, 14 + H
has order 4.

(b) What is the order of 4U5(105) in the factor group U(105)/Us(105).

Solution. Note that Us(105) = {1, 11, 16,26, 31, 41,46, 61, 71, 76,86, 101}. Then [4U5(105)]2 =
16U5(105) = Us(105). Thus, 4U5(106) has order 2.

(a) Prove that if H < G and |G : H| = 2, then H is normal.

Solution. If |G : H| = 2, then there are two left cosets H,aH with a ¢ H, and G has two
right cosets H, Ha such that aH = G — H = Ha. So, H is normal.

(b) Show that A,, is normal in S,.

Solution. Since |S), : A,| =2, A, is normal in S,,.

Let G =Zys®U(4), H = ((2,3)) and K = ((2,1)). Show that G/H is not isomorphic to
G/K.

Note that H = {(2,3),(0,1)} and K = {(2,1) = (0,1)}.

Then G/H = {(0,1)+ H,(1,1)+ H,(2,1) + H,(3,1) + H} isomorphic to Zy,

and G/K = {(0,1) + K,(0,3) + K, (1,1) + K, (1,3) + K} is isomorphic to Zy & Zs.

Let G be a finite group, and H be a normal subgroup of G.

(a) Show that the order of aH in G/H must divide the order of a in G.

Solution. Suppose |a| = m. Then (aH)™ = eH = H. So, |aH]| is a factor of m.

(b) Show that it is possible that aH = bH, but |a| # |b].

Solution. Suppose G = Zg, H = {0,3}. Then 0+ H = 3 + H where |[0| = 1 and |3| = 2.

If G is a group and |G : Z(G)| = 4, prove that G/Z(G) is isomorphic to Zy & Zs.

Solution. If |G/Z(G)| = 4, it is isomorphic to Z4 or Zo ® Zo. If G/Z(G) is cyclic, then G is
Abelian so that G = Z(G) and |G/Z(G)| = 1, a contradiction.

Suppose that N <G and |G/N| = m, show that 2™ € N for all x € G.

Solution. By Lagrange theorem, (xN)™ = eN = N in G/N. Thus, 2™ € N.

(a) Explain why x — 3x from Zj2 to Zjg is not a homomorphism.

(b) Prove that there is no isomorphism from Zg @ Zy to Zy & Zy.

Solution. (a) In Zj9, [0] = [12]. But then ¢([0]) = [0] # [6] = [36] = ¢([12]) in Z1o.

(b) Note that (1,0) has order 8 in Zg @ Zg, but ¢(1,0) € Zy ® Z4 has order at most 4.

How many homomorphisms are there from Zsg onto Zg. How many are there to Zg?

Solution. Note that a homomorphism ¢ : Z,, — Z, is completely determined by ¢([1],,) =
[k], with & = 0,1,...,n — 1. In order that ¢ is well-defined, [z],, = [y]m should ensure
[kx], = [ky]n. The condition reduces to: m|(xz — y) implies n|k(z — y), equivalently, n|km. It
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will be an isomorphism if ¢([i]) = [1] for some i because we can get ¢([zi]) = [z] for every
T € Ly,

Thus, ¢([1]) is a homomorphism with ¢([1]) = [k] if and only if £ = 0,2,4,6. Of course, none

of these homomorphisms is onto.

Prove that ¢ : Z & Z — Z by ¢(a,b) = a — b is a homomorphism. Determine the kernel, and
o' ({3) ={(z.y) €Z® L : §(x,y) = 3}.

Solution. ¢((a,b)+(c,d)) = ¢p(a+c,b+d) = (a+c)—(b+d) = (a—b)+(c—d) = ¢(a,b)+¢(c, d)
for any (a,b), (¢,d) € Z& Z. So, ¢ is an homomorphism.

Ker(¢) ={(a,b) : 0= ¢(a,b) =a—b} = {(a,a) : a € Z}.

For each pair of positive integer m and n, show that the map from Z to Z,, ® Z,, defined by
x + ([2]m, [z]n) is a homorphism.

(a) Determine the kernel when (m,n) = (3,4).

(b) Determine the kernel when (m,n) = (6,4).

(c) (Extra 4 points.) Generalize the result.

Solution. The map is an homomorphism because for any a,b € Z,
¢(a+0b) = ([a+blm, [a+b]n) = ([a]m, [aln) + ([lm, [b]n) = d(a) + & (b).

(a) ¢(z) = ([z]3, [z]a) = ([0],[0]) if and only if 3|z and 4|x. So, Ker(¢) = {12k : k € Z}.
(b) ¢(x) = ([x]s, [x]4) = ([0], [0]) if and only if 6|z and 4|z. So, Ker(¢) = {12k : k € Z}.
(c) &

c) ¢(x) = ([z]m, [x]n) = ([0],[0]) if and only if m|x and n|z. So, Ker(¢p) = {¢k : k € Z},
where ¢ = lem(m,n).

~—

(Optional.) Suppose K < G and N < G. Show that K N/N is isomorphic to K/(K N N).

Solution. First, note that KN is a subgroup. Reason: e € KN is non-empty; if kini, kono €
KN then by the normality of N (kiny)(kang)™' = kining 2kyt = kinsky, ' = kiky'ng =
ksnyg € KN for some ng,ng € N and k3 € K.

Second, note that K N N is normal in K because k(K "1 N)k~! = kKk ' NkNk~'=KNN
for any k € K.

Third, note that N is normal in KN because (kn)N(kn)~! = knNn~'k~! = N for any
kn € KN.

Define ¢ : KN/N — K/(K N N) by ¢(knN) = ¢(kN) = k(K N N) for any kn € KN.
It is well-defined: If kyny = kona, then ky 'ky = nany' € KNN so that ki (KNN) = ko (KNN).

It is 1-1: Note that all elements in K N/N has the form (kn)N = kN. If ¢(k1N) = ¢(kaN)
then ki (K N N) = ko(K N N). Thus, ky'ky € KN C N. Thus, ki N = kaN.

It is onto because for any k(K N N) in K/(K N N), we have ¢(kN) = k(K N N).
Now, (I)((klN)(kQN)) = gf)(lﬁng) = kle(KﬂN) = k1(Kﬁ N)kQ(KﬂN) = (f)(klN)(b(kzN)
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(a) Let G be the group of nonzero real numbers under multiplication. Suppose r is a positive
integer. Show that z +— 2" is a homomoprhism. Determine the kernel, and determine r so
that the map is an isomorphism.

(b) Let G be the group of polynomial in x with real coefficients. Define the map p(z) —
P(z) = [p(z) such that P(0) = 0. Show that f is an homomorphism, and determine its
kernel.

Solution. (a) Evidently, ¢ is well-defined and ¢(zy) = 2"y" = ¢(x)¢(y) for all x,y € R*. So,
¢ is an homomorphism. Now, ¢(x) = 2" = 1 if and only if (i) x = 1 or (ii) r is even and
x = —1. So, Ker(¢) = {1} if r is odd, and Ker(¢) = {1,—1} if r is even.

If r is even, then Ker(¢)| > 1 so that ¢ is not injective and therefore not bijective.

If r is odd, then ¢ is one-one and every = # 0 has a unique real root z'/". So, ¢ is an
isomorphism.

(b) Let p(x) = ag + - - - + a,a™. Because we assume that ¢(p(x)) = P(x) such that P(0) =0,
we have ¢(p(x)) = apz + a12%/2 + - - + apz™ /(n + 1). Suppose p(x) and g(z) are two real
polynomial. Then ¢(p(z) + q(x)) = [(p(x) + q(x)) = [p(x) + [ q(z) = ¢(p(x)) + d(q()).

Here the integration constant is always 0 by assumption.

If p(z) is not the zero polynomial of degree n > 0, then [ p(z) has degree n + 1 is nonzero.
Thus, Ker(¢) contains only the zero polynomial.

Show that if ¢ : G; — G5 is an homomorphism, and K is a normal subgroup of G, then
#~1(K) is a normal subgroup of Gj.

Proof. It follows from the classnote, or the proof in the book. Let K be normal in G2 and
H = ¢ Y(K) in Gy. Then for any a € Gy, consider aHa"!. Since

¢(aHa™") = {p(a)p(h)p(a) ™" : h € H} = $(a)Kd(a) ™! = K
by the normality of K in Gg, we see that H = ¢~!(K) = aHa~!. So, H is normal in Gj.

(a) Determine all homomorphisms from Z,, to itself.
(b) Find a homomorphism from U(30) to U(30) with kernel {1,11} and ¢(7) = 7.
Solution. (a) Suppose ¢(1) = k € Z,. For ¢ to be well-defined, we need a = b in Z,, i.e.,

n|(a — b) implies that ka = kb in Z,,, which is always true. So, there are n homomorphisms.
(b) Note that U(30) = {1,7,11,13,17,19,23,29} = (7) x (11). Given ¢(7) = 7 and ¢(11) =1,
the homomorphism is completely determined. It is a 2 to 1 map such that ¢(1) = ¢(11) =1,
¢(7) = ¢(17) =7, 6(13) = $(23) = 13, ¢(19) = ¢(29) = 19.

Let p be a prime. Determine the number of homomorphisms from Z, ® Z,, to Z,.

Solution. If ¢ is a homomorphism such that ¢(1,0) = z and ¢(0,1) = y, then ¢(a,b) =
a¢(1,0) + b¢p(0,1) = ax + by. For each choice of (z,y) € Zy,Zyp, (a1,b1) = (az,bz) implies
that p|(a1 — a2) and p|(by — b2). So, p|(aix + biy — asx — bay). Thus, ¢ is well-defined, and
satisfies ¢((a,b) + (¢,d)) = (a + c)z + (b + d)y = ¢(a,b) + ¢(c,d). So, ¢ is a homomorphism.
Hence, there are p? choices.



39.

40.

41.

42.

43.

Show that if M and N are normal subgroup of G and N < M, then (G/N)/(M/N) is
isomorphic to G/M.

Solution. Consider ¢ : G/N — G /M defined by ¢(gN) = gM.

To show that g is well-defined, let ¢t N = ¢goN in G/N. Then 91—192 € N < M. Then
giM = ga M.

To show that g is a homomorphism, note that for any ¢1N,goN € G/N, ¢(q1NgaN) =
P(g192N) = g1g2M = g1 M gaM = ¢(g1N)$(g2N).
To show that g is surjective, let gM € G/M, then ¢p(gN) = gM.

Consider the kernel of ¢, we have ¢p(gN) = gM = M if and only if g € M, i.e., gN € M/N =
{mN :m e M}.

Now the image of ¢ is isomorphic to (G/N)/Ker(¢), the result follows.

(a) Give an example of a subset of a ring that is a subgroup under addition but not a subring.
(b) Give an example of a finite non-commutative ring.

Solution. (a) Let H = ((2,3)) € Z& Z. Then H = {(2k,3k) : k € Z} is a subgroup under
addition. But (2,3)(2,3) = (4,9) ¢ H.

(b) Let R = M(Zy). Then there are 2* elements because each entries has two choices.

Clearly, AB # BAif A = Bt = (8 é)

Show that if m,n are integers and a, b are elements in a ring. Then (ma)(nb) = (mn)(ab).

Solution. If m or n is zero, then both sides equal 0. If m,n € N, then

(a+--+a)(b+---+b) = (ab+ -+ ab) = (mn)(ab).

m n mn

If m is negative and n is positive, then (ma)(nb) + (Jm|a)(nb) = ((m + |m|)a)(nb) = 0 so
that (ma)(nb) = —(|m|n)(ab) = (mn)(ab). Similarly, if m is positive and n is negative,
then (ma)(nb) = (mn)(ab). Finally, if m,n are negative, then (ma)(nb) = (—|mla)(—|n|b) =
|mn|(ab) = (mn)(ab).

Let R be a ring.

(a) Suppose a € R. Shown that S = {x € R: ax = za} is a subring.

(b) Show that the center of R defined by Z(R) = {z € R: ax = za for all a € R} is a subring.

Solution. (a) Note that 0 € S is non-empty. Suppose z,y € S. Then ax = za and ay = ya.
So, a(x —y) = ax —ay = za —ya = (x —y)a. So, x —y € S. Also, a(xy) = (za)y = (zy)a.
So, zy € S. It follows that S is a subring.

(b) Note that 0 € S is non-empty. Suppose z,y € Z(R). Then ar = za and ay = ya.
So, a(zr —y) = ax — ay = za —ya = (x — y)a for any a € R. So, x —y € Z(R). Also,
a(zy) = (za)y = (zy)a for any a € R. So, zy € Z(R). It follows that Z(R) is a subring.

Let R be a ring.
(a) Prove that R is commutative if and only if a®> — b? = (a + b)(a — b) for all a,b € R.



44.

45.

46.

47.

(b) Prove that R is commutative if a> = a for all a € R.

Solution. (a) If R is commutative, then (a 4 b)(a — b) = a? 4+ ab — ba — b*> = a? — b? for
any a,b € R. Suppose (a + b)(a —b) = a® + ab — ba — b* = a® — b* for any a,b € R. Then
ab—ba =0, i.e., ab = ba.

(b) Suppose a? = a for all a € R. Then for any a,b € R, a>+b*> =a+b= (a+b)?> =a®+ab+
ba + b? so that ab+ ba = 0. Hence, ab = —ba so that ab = (ab)? = (—ba)? = (—1)%(ba)? = ba.

Show that every nonzero element of Z,, is a unit (element with multiplicative inverse) or a
zero-divisor.

Solution. Let k € Z, be nonzero. If ged(k,n) = d, then for m = n/d # 0 in Z,, we have
km = rn = 0 for some r € Z. So, k (also, m) is a zero divisor. If ged(k,n) = 1, then by
the Euclidean algorithm, there are x,y € Z such that kxz +ny = 1. Thus, in Z, we have
1 =kx +ny = kzx. Thus, x € Z, satisfies kx = 1. So, k is a unit.

(a) Given an example of a commutative ring without zero-divisors that is not an integral
domain.
(b) Find two elements a and b in a ring such that a, b are zero-divisors, a + b is a unit.

Solution. (a) Let R = 2Z. Then R has is a commutative ring without zero-divisors. But R
has no unit. So, R is not an integral domain.

(b) Consider 2,3 € Zg. Then 2,3 are zero-divisors, and 2 + 3 = 5 is a unit as 52 = 1.
(a) Give an example to show that the characteristic of a subring of a ring R may be different
from that of R.

(b) Show that the characteristic of a subdomain of an integral domain D is the same as that
of D.

Solution. (a) Consider Z4 and S = {0,2} C Z4. Then char(Z4) = 2 and char(S) = 2.

(b) Suppose D' is a subdomain of D with unity 1. Then D’ has a unity 1’. Note thatl’ = 1-1/
in D,and 1’-1"=1"in D'. So, 1’-1" =1-1"and 1 = 1’ by cancellation. So, char(D) =
char(D") = |1].

An element a of a ring R is nilpotent if o = 0 for some n € N.

(a) Show that if @ and b are nilpotent elements of a commutative ring, then a + b is also
nilpotent.

(b) Show that a ring R has no nonzero nilpotent element if and only if 0 is the only solution
of #2 =0 in R.

Solution. (a) Suppose a" = 0 = b™ with n,m € N. Because R is commutative, the Binomial
theorem applies and

n+m = n+m j pm+n—j
(at+0)m=3" (""" )alomtni = 0
=0~ 7

by the fact that a/ = 0 or b"+*™7 = 0 depending on j > n or j < n.

(b) If there is a nonzero z € R satisfies 22 = 0, then x is a nilpotent. If y € R is a nonzero

k—1

nilpotent and k > 1 is the smallest positive integer such that y* = 0, then z = y satisfies

22 = 22 = yhyh-2 —
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48.

49.

50.

o1.

52.

Show that the set of all nilpotent elements of a communtative ring is an ideal.

Solution. Let A be the set of nilpotent elements of a commutative ring R. First, 0 € A; if
x,y € A so that ™ = 0 = y™, then (z—y)™""™ = 0 by the same proof as in (a) of the previous
question. Thus, z —y € A. Moreover, if z € R, then (z2)" = 2"2" = 0. So, A is an ideal.

(a) Given an example to show that a factor ring of an integral domain may have zero-divisors.

b) Give an example to show that a factor ring of a ring with zero-divisors may be an integral
domain.

Solution. (a) Let R =Z and S = 4Z. Then R/S is isomorphic to Z4, which has zero divisors.
(b) Let R =Z4 and S = {0,2}. Then R has zero divisor 2, and R/S is isomorphic to Zy has

no zero divisors.

Suppose R is a commutative ring with unity and charR = p, where p is a prime. Show that
¢ : R — R defined by ¢(z) = «P is a ring homomorphism.

Solution. Note that for k =1,...,p—1, () = p!/(k!(p—Fk)!) is divisible by p. Thus, ¢(z+y) =
(z+y)P =200 (F)aly?7 = aP +y? = () + ¢(y), and d(xy) = (vy)? = 2Py = d(2)P(y).
So, ¢ is a ring homomophism.

Let Ry and Rg be rings, and ¢ : Ry — R be a ring homomorphism such that ¢(R) # {0'}.
(a) Show that if Ry has unity and Ry has no zero-divisors, then ¢(1) is a unity of Ra.

(b) Show that the conclusion in (a) may fail if Ry has zero-divisors.

Solution. (a) Let ¢(z) = y be nonzero in Ry. Then ¢(1)2¢(z) = ¢(z) = ¢(1)¢(z). Thus,
#(1)? = ¢(1) and ¢(1) # 0. For any z € Ra, ¢(1)%z2 = ¢(1)z so that ¢(1)z = z, and
2¢(1) = z¢(1)? so that z = z¢(1). The result follows.

(b) Suppose ¢ : Z — Z @& Z such that ¢(n) = (n,0). Then ¢(1) = (1,0) is not the unity in
YASY/R

Let R; and R be rings, and ¢ : Ry — R be a ring homomorphism.

(a) Show that if A is an ideal of R;, then ¢(A) is an ideal of ¢(R;).

(b) Give an example to show that ¢(A) may not be an ideal of Rs.

(c) (Optional, extra 2 points) Show that if B is an ideal of R, then ¢~ 1(B) is an ideal of R;.
Solution. (a) Suppose A is an ideal in R;. Then 0 € Ry, for any aj,as € A and = € Ry,
a1 — az,a1y,ya; € A. Thus, for any b1,bs € ¢(A) and y € ¢(R1), we have aj,ay € A
and z € Ry such that ¢(a1) = b1, ¢(az2) = be and ¢(z) = y so that by — be = ¢(a1) —
Plaz) = ¢(a1 — a2),biy = ¢(a1)d(z) = ¢(a1z),yb1 = ¢(x)p(a1) = ¢(za1) € ¢(A). Thus,
by — ba, b1y, yb1 € ¢(A). Hence ¢(A) is an ideal in ¢(R;).

z 0

(b) Consider ¢ : R — M(R) defined by ¢(z) = <0 0

and ¢(R) is not an ideal.

(c) Suppose B is an ideal in Re. Then 0/ € Ry, for any by, by € Band y € Ra, by —ba, b1y, yby €
B. Now, for any aj,as € ¢$~1(B) and 2 € Ry, we have ¢(a1),¢(az) € B and ¢(z) € Ry so
that ¢(a1 — az) = é(a1) — d(az), p(a1z) = é(a1)¢(x), p(za1) = é(w)p(a1) € B. Thus,

ai; — ag, a1z, xa; € ¢~ 1(B). Hence ¢! (B) is an ideal in R;.

>. Then ¢ is a ring homomorphism,
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93.

54.

55.

56.

If ¢ : R — S is a ring homomorphism, prove that the map ¢ : R[z] — S[z] defined by

blag + -+ anwy) = ¢(ag) + - - - + ¢(an)x"
is a ring homomorphism.

Solution. Let f(z) = ag + -+ + anz”, g(x) = bo + - - + by z™. We may assume m = n by
adding terms of the form 0z* to the polynomial with lower degree. Then

o(f(z) + g(x)) = ¢lap +bo) + -+ - + d(an + by)z™

= [¢(ao) + -+ + d(an)a"] + [6(bo) + - + d(bn)2"] = ¢(f(2)) + ¢(g()).
Also f(z)g(z) = 33", cpa® with ¢ = > ipjer aibj for k=0,...,2n. So,

B(f@)dlg(@) = (3 dla)a’) (3 élb)a? ) = ea*
such that ¢ =37, iy @(ai)d(bj) = A3 j— aibj) = ¢(cx) for k =0,...,2n. Thus,
o(f(x)(g(x)) = o(f(2)g(2)).

Let D be an integral domain.

(a) Show that for any two nonzero polynomials f(z),g(x) € D[z]. Show that
deg(f(2)g(x)) = deg(f(x)) + deg(g(z)).

(b) Show that a nonconstant polynomial in D[z] has no multiplicative inverse.

Solution. (a) Let f(z) = ag+ -+ + anx”, g(xz) = by + - - + bpx™ with a,, # 0 and b, # 0.
Then f(z)g(z) = St cpa® with ¢ = > iyjek @ibj for k =0,....,m +n. In particular,
Cmtn = Gnby # 0 in D. Thus, deg(fg) = deg(f) deg(g)-

(b) Suppose f(z) has degree n > 1. Then for any nonzero g(x) € D[z], f(x)g(z) has degree
at least n by part (a). Thus, g(z) cannot be an inverse of f(z) in D[z].

Find an multiplicative inverse of 2z + 1 in Zy[x], AND prove that the inverse is unique.

Solution. Suppose f(x) =2z + 1. Then f(x)f(x) = 42® + 42 + 1 = 1 € Zy[z]. Thus, f(x) is
the inverse of itself. Suppose g(x) = bg + - - - + by, z™ satisfies

1= f(z)g(z) = (bo+ -+ bpz™) + 2x(bg + - - - + bypz™).

Then by = 1, 2b,,, =0, and b; +2b;_1 =0 fori =m,...,1. Wehave by =1,y =2,and b; =0
fori=2,...,m. Thus, g(z) = f(z).

Let F be a field and p(z) € F[z]. Suppose f(x) and g(x) has degrees less than p(z). Then
f(@) + {p(x)) # g(x) + (p(x))

if and only if f(z) # g(z).
Solution. If f(z) # g¢(z), then f(z) — g(x) is nonzero and not a multiple of p(z). So,

f(x) —g(x) & (p(x)). Thus, f(x)+ (p(x)) # g9(x) + (p(z)).

The converse is clear.
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