Math 307 Abstract Algebra Sample final examination questions with solutions

1. Suppose that H is a proper subgroup of \mathbb{Z} under addition and H contains 18,30 and 40, Determine H.

Solution. Since gcd(18, 30, 40) = 2, there exists an $x, y, z \in \mathbb{Z}$ such that 18x + 30y + 40z = 2. In fact, one easily checks that $2 = 2 * 40 - 2 * 30 - 1 * 18 \in H$. So, H contains $2\mathbb{Z}$, which is the set of all even numbers. If H contains any additional element a, it will be of the form 2k + 1. Then $1 = (2k + 1) - 2k \in H$ and $H = \mathbb{Z}$. Hence, H cannot contain other elements, and $H = 2\mathbb{Z}$.

2. Let H and K be subgroups of a group G. Show that $H \cup K \leq G$ if and only if $H \leq K$ or $K \leq H$.

Solution. Let G be a group and let $H, K \leq G$. Assume without loss of generality that $H \leq K$, that is $H \subseteq K$, which implies that $H \cup K = K \leq G$.

Conversely, assume that $H \not\leq K$ and $K \not\leq H$, that is $H \not\subseteq K$ and $K \not\subseteq H$, which implies that $H \cup K \neq K$ and $H \cup K \neq H$. Then, there exists an $h \in H \setminus K$ and a $k \in K \setminus H$ such that $h, k \in H \cup K$, Suppose, $H \cup K$ were a subgroup of G. Then $hk \in H \cup K$.

Case 1. If $hk \in H$, then $h^{-1} \in H$ and hence $k = h^{-1}(hk) \in H$, which is a contradiction.

Case 2. If $hk \in K$, then $k^{-1} \in K$ and hence $h = (hk)k^{-1} \in K$, which is a contradiction. Thus, $H \cup K$ cannot be a subgroup.

- 3. Suppose a and b are elements in a group such that |a| = 4, |b| = 2, and $a^3b = ba$. Find |ab|. Solution. We prove that |ab| = 2. Note that $(ab)(ab) = a(ba)b = a(a^3b)b = a^4b^2 = e$. So, |ab| = 1 or 2. If |ab| = 1, then a is the inverse of b so that 4 = |a| = |b| = 2, which is absurd. So, |ab| = 2.
- 4. Let a and b belong to a group. If |a| and |b| are relatively prime, show that $\langle a \rangle \cap \langle b \rangle = \{e\}$. Solution. Suppose $H = \langle a \rangle = \{a, a^2, \dots, a^m\}$ and $K = \langle b \rangle = \{b, b^2, \dots, b^n\}$, where $a^m = b^n = e$, such that gcd(m, n) = 1. Clearly, $e \in H \cap K$. Suppose $c \in H \cap K$ and |c| = k. Then k is factor of m and also a factor of n. Thus, k = 1 and c = e.
- 5. Suppose G is a set equipped with an associative binary operation *. Furthermore, assume that G has an left identity e, i.e., eg = g for all $g \in G$, and that every $g \in G$ has an left inverse g', i.e., g' * g = e. Show that G is a group.

Solution. Let $g \in G$. We first show that the left inverse g' of g is also the right inverse. To see this, let \hat{g} be the left inverse of g'. Then $(\hat{g}) = (\hat{g})(g'g) = (\hat{g}g')g = eg = g$. So, $\hat{g} = g$ satisfies $e = \hat{g}g' = gg'$.

Now, because gg' = g'g = e, we have ge = g(g'g) = (gg')g = g.

6. Suppose x is an element of a cyclic group of order 15 and exactly two of x^3, x^5 , and x^9 are equal. Determine $|x^{13}|$.

Solution. Let $x \in G = \langle a \rangle = \{a, \ldots, a^{15}\}$. Clearly, |x| > 1, else $e = x^3 = x^5 = x^9$. Note also that |x| is a factor of |G| = 15. Thus, $|x| \in \{3, 5, 15\}$. Consider 3 cases.

- 1. $x^3 = x^5 \neq x^9$. Then $x^2 = x^{5-3} = e$. So, |x| = 2, a contradiction. 2. $x^3 \neq x_5 = x^9$. Then $x^4 = x^{9-5} = e$ so that $|x| \in \{2, 4\}$, a contradiction. 3. $x^3 = x^9 \neq x^5$. Then $x^6 = x^{9-3} = e$ so that $|x| \in \{2, 3, 6\}$. Thus, |x| = 3 and $|x^{13}| = |x| = 3$.
- 7. Consider $\sigma = (13256)(23)(46512)$.
 - (a) Express σ as a product of disjoint cycles. Solution. $\sigma = (1, 2, 4)(3, 5)$.
 - (b) Express σ as a product of transpositions. Solution. $\sigma = (1, 4)(1, 2)(3, 5)$.
 - (c) Express σ as a product minimum number of transpositions.

(Prove that the number is minimum!)

Solution. σ moves more than 5 numbers in $\{1, \ldots, 6\}$. So, we need at least three transpositions.

8. (a) Let $\alpha = (1, 3, 5, 7, 9, 8, 6)(2, 4, 10)$. What is the smallest positive integer n such that $\alpha^n = \alpha^{-5}$?

Solution. We need to find the smallest n such that $\alpha^{n+5} = \varepsilon$. Since $|\alpha| = \text{lcm}(5,3) = 21$, we see that n = 16.

(b) Let $\beta = (1, 3, 5, 7, 9)(2, 4, 6)(8, 10)$. If β^m is a 5-cycle, what can you say about m?

Solution. Note that β^m is a 5-cycle if and only if $(2,4,6)^m = (8,6)^m = \varepsilon$ and $(1,3,5,7,9)^m$ is a five cycle. This happen if and only if m is a multiple of 6 = lcm(3,2) and m is not a multiple of 5. That is m = 6k and k is not a multiple of 5.

9. In S_7 show that $x^2 = (1, 2, 3, 4)$ has no solutions, but $x^3 = (1, 2, 3, 4)$ has at least two.

Solution. Note that $(x^2)^4 = \varepsilon$. So, |x| = 1, 2, 4. Clearly, $|x| \neq 1, 2$, else $x^2 \neq (1, 2, 3, 4)$. If |x| = 4, then x is a 4-cycle, or the product of a 4-cycle and a 2-cycle; in either case, $x^2 \neq (1, 2, 3, 4)$.

A shorter proof is to observe that $x^2 = (1, 2, 3, 4) = (1, 4)(1, 3)(1, 2)$ is an odd permutation. But x^2 must be an even permutation for any $x \in S_n$.

Let $x \in \{(1, 4, 3, 2), (1, 4, 3, 2)(5, 6, 7)\}$. Then $x^3 = (1, 2, 3, 4)$.

10. Let $H \leq S_n$.

(a) Show that either $H \leq A_n$ or $|H \cap A_n| = |H|/2$. Solution. Suppose $H \leq S_n$. Let $S_1 = H \cap A_n$, and $S_2 = H - S_1$.

Case 1. If $S_2 = \emptyset$, then $H \leq A_n$.

Case 2. If $S_2 \neq \emptyset$ and $g \in S_2$ is an odd permutation. Then define $f : S_1 \to S_2$ by f(x) = gx. It is well defined because for every even permutation $x \in H$, $gx \in H$ is an odd permutation and will be in S_2 .

It is 1-1 because $f(x_1) = f(x_2)$ implies $gx_1 = gx_2$ so that $x_1 = x_2$ by cancellation.

If is onto because for every $y \in S_2$, we can let $x = g^{-1}y \in H \cap A_n = S_1$ so that f(x) = y.

Since there is a bijection from S_1 to S_2 , we see that $|S_1| = |S_2|$, and $|H \cap A_n| = |H|/2$ as asserted.

(b) If |H| is odd, show that $H \leq A_n$.

Solution. Since |H| is odd, it cannot be the case that $|H \cap A_n| = |H|/2$. So, $H \leq A_n$.

11. Let G be a group. Show that $\phi: G \to G$ defined by $\phi(g) = g^{-1}$ is an isomorphism if and only if G is Abelian.

Solution. Suppose G is Abelian. First, we show that ϕ is bijective. Clearly, if $\phi(a) = \phi(b)$, then $a^{-1} = b^{-1}$. Taking inverse on both sides, we see that a = b; so ϕ is 1-1. If $a \in G$, then $\phi(a^{-1}) = a$; so ϕ is onto. Now, by commutativity, for any $a, b \in G$. $\phi(ab) = (ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} = \phi(a)\phi(b)$. Thus, ϕ is a group isomorphism.

Conversely, suppose ϕ is an isomorphism. Then for any $a, b \in G$, $a^{-1}b^{-1} = \phi(a)\phi(b) = \phi(ab) = (ab)^{-1} = b^{-1}a^{-1}$. Taking inverse on both sides, we see that ba = ab.

12. Let G be a group with |G| = pq, where p, q are primes. Prove that every proper subgroup of G is cyclic. But the whole group may not be cyclic.

Solution. Let H be a proper subgroup of G. Then $|H| \in \{1, p, q\}$. By Homework 2, or a corollary of Lagrange theorem, H has prime order or order 1 is cyclic.

Consider S_3 of order 6. Every proper subgroup is cyclic, but S_3 is not.

13. (a) Let $H = \langle (1,2) \rangle \in S_3$. Write down all the left cosets of H in S_3 , and also the right cosets of H in S_3 .

Solution. $(1,3)H = (1,2,3)H = \{(1,3), (1,2,3)\}, (2,3)H = (1,3,2)H = \{(2,3), (1,3,2)\}.$ $H(1,3) = H(1,3,2) = \{(1,3), (1,3,2)\}, H(3,2) = H(1,2,3) = \{(3,2), (1,2,3)\}.$

(b) Let $n\mathbb{Z} = \{nk : k \in \mathbb{Z}\} \leq \mathbb{Z}$ under addition. Determine the number of left cosets $a + n\mathbb{Z} = \{a + x : x \in n\mathbb{Z}\}$ of $n\mathbb{Z}$ in \mathbb{Z} .

Solution. The left cosets are the same as right cosets are the n sets:

$$[k] = \overline{k} = \{nx + k : x \in \mathbb{Z}\}, \qquad k = 0, \dots, n - 1.$$

Note that for any $a \in \mathbb{Z}$, $a + n\mathbb{Z} = k \in \{0, 1, \dots, n-1\}$ if and only if a - k is a multiple of n. (Division algorithm creates a complete residue system for $n\mathbb{Z}$.)

14. Let G be a group with |G| = pq, where p, q are primes. Prove that every proper subgroup of G is cyclic. But the whole group may not be cyclic.

Solution. Let H be a proper subgroup of G. Then $|H| \in \{1, p, q\}$. By Homework 2, or a corollary of Lagrange theorem, H has prime order or order 1 is cyclic.

Consider S_3 of order 6. Every proper subgroup is cyclic, but S_3 is not.

15. Let G be a group of order p^2 for a prime p. Show that G is cyclic or $g^p = e$ for all $g \in G$. Solution. Note that elements of G have orders in the set $\{1, p, p^2\}$.

Case 1. There is an element $a \in G$ of order p^2 . Then $G = \langle a \rangle$ is cyclic.

Case 2. No elements in G has order p^2 , then each element x in G has order 1 or p; so, $x^p = e$.

16. Can a group of order 55 have exactly 20 elements of order 11? Give a reason for your answer. Solution. No. If G = ⟨a⟩ is cyclic, then a^{5k} for k = 1,..., 10 are the only elements of order 11. If G is not cyclic then each elements in G not equal to e have order 5 or 11. If x has order 11, then x, x²,..., x¹⁰ have order 11 and generate the same subgroup. If y has order 5, then y, y², y³, y⁴ have order 5 and generate the same subgroup. So, G can be partitioned into disjoint subsets of the form

(1)
$$\{e\}$$
, (2) $\{x, \ldots, x^{10}\}$, (3) $\{y, y^2, y^3, y^4\}$.

In particular, 55 = 1 + 5r + 4s if there are r type (2) subsets and s type (3) subsets in G. Since there are exactly 20 elements of order 11, so r = 2. But then there is no $s \in \mathbb{N}$ such that 55 - 1 - 20 = 4s.

17. Let G be a (finite) group, and $H \leq K \leq G$. Prove that

$$|G:H| = |G:K| |K:H|.$$

Prove the same result for infinite group G as long as |G:H| is finite.

Solution. Clearly, |G:H| = |G|/|H| = (|G|/|K|)(|K:H|) = |G:K||K:H|.

Suppose G is an infinite group. Assume |G:H| = t. Then G is a disjoint union of t cosets of H, namely, g_1H, \ldots, g_kH . Since $G = g_1H \cup \cdots g_tH \subseteq g_1K \cup \cdots \cup g_tK$, there are at most t left cosets of K in G. Hence |G:K| is finite, say, equal to r. Also, |K:H| is finite. Otherwise, we there is an infinite sequence of elements $k_1, k_2, \cdots \in K$ such that k_1H, k_2H, \ldots are disjoint cosets in $K \leq G$, contradicting there are finitely many disjoint cosets in G. So, assume that k_1H, \ldots, k_sH are the disjoint cosets of H in K. We **claim** that g_ik_jH are all the distinct cosets of H in G. Thus, |G:H| = rs = |G:K| |K:H| as asserted.

To prove our claim, first observe that every $g \in G$ lies in a $g_i K$ for some $i = \{1, \ldots, r\}$, so that $g = g_i k$ for some $k \in K$. But then $k \in k_j H$ for some $j \in \{1, \ldots, s\}$. So, $g \in g_i k_j H$. It remains to show that the cosets $g_i k_j H$ are disjoint for $1 \leq i \leq r, 1 \leq j \leq s$. Suppose by contradiction that $g_i k_j H = g_p k_q H$ for $(i, j) \neq (p, q)$. If $i \neq p$, then $g_i k_j H \cap g_p k_q H \subseteq g_i K \cap g_p K = \emptyset$; if i = p but $j \neq q$, then $k_j H \cap k_q H$ is empty and so is $g_i k_j H \cap g_i k_q H$. The result follows.

18. Prove that A_5 has no subgroup of order 30.

Solution. Note that A_5 has elements of the form in disjoint cycle decomposition:

(1) ε , (2) $(i_1, i_2)(j_1, j_2)$ (15 of them), (3) (i_1, i_2, i_3) (20 of them), (4) (i_1, \ldots, i_5) (24 of them).

Suppose $H \leq A_5$ has order 30 and contains n_i element of type (i) for i = 1, 2, 3, 4, then $30 = 1 + n_2 + 2n_3 + 4n_4$ is even. So, $n_2 > 0$. Let $\sigma = (i_1, i_2)(j_1, j_2) \in H$. Consider $\tau = (i_1, i_2, j_1) \in A_4$. Then $\tau \sigma \in \tau H = G - H = H\tau$. Thus $\tau \sigma \tau^{-1} = (j_1, i_2)(i_1, j_2) \in H$. Similarly, $\tau^{-1}\sigma\tau = (j_2, i_2)(j_1, i_1) \in H$. But then $K = \{\varepsilon, \sigma, \tau^{-1}\sigma\tau, \tau\sigma\tau^{-1}\}$ is a 4 element subgroup of H, which is impossible by Lagrange Theorem.

19. Suppose G is a group of order n, and $k \in \mathbb{N}$ is relatively prime to n. Show that $g: G \to G$ defined by $g(x) = x^k$ is one-one. If G is Abelian, show that g is an automorphism.

Solution. Note that there are $x, y \in \mathbb{Z}$ such that nx + ky = 1. If $x^k = y^k$, then by the fact that $x^n = y^n = e$, we have

$$x = x^{nx+ky} = (x^k)^y = (y^k)^y = y^{nx+ky} = y.$$

Since G is finite, the function $x \mapsto x^k$ is 1-1 if and only if it is bijective. If G is Abelian, then $(xy)^k = x^k y^k$ so that the map $x \mapsto x^k$ is an isomorphism.

20. Show that every $\sigma \in S_n$ is a product of the *n*-cycle $\alpha = (1, 2, ..., n)$ and the 2-cycle $\tau = (1, 2)$. Determine the minimum number of α and τ needed for a given σ .

Solution. Note that $\alpha^k \tau \alpha^{-k} = (k+1, k+2)$ for $k = 1, \ldots, n-2$. Thus, we can generate transpositions of the form $(1, 2), (2, 3), \ldots, (n-1, n)$.

Now, (i, i+1)(i+1, i+2)(i, i+1) = (i, i+2); so, we get (i, i+2) for all i = 1, ..., n-2.

Next, (i, i+1)(i+1, i+3)(i, i+1) = (i, i+3); so, we get (i, i+3) for all i = 1, ..., n-3. Repeating these arguments, we get (i, j) for all transpositions. So, we can get any $\sigma \in S_n$.

21. If r is a divisor of m and s is a divisor of n, find a subgroup of $\mathbb{Z}_m \oplus \mathbb{Z}_n$ that is isomorphic to $\mathbb{Z}_r \oplus \mathbb{Z}_s$.

Solution. Let $a = m/r, b = n/s, H = \{(pa, qb) : p, q \in \mathbb{Z}\}$, and $\phi : \mathbb{Z}_r \oplus \mathbb{Z}_s \to H$ defined by $\phi(p,q) = (pa,qb)$ is an isomorphism.

1) ϕ is well-defined: If $(p_1, q_1) = (p_2, q_2)$, then $p_1 - p_2 = ru, q_1 - q_2 = sv$ with $r, s \in \mathbb{Z}$. So, $p_1a - p_2a = ura = um$ and $q_1b - q_2b = svb = sn$. Thus, $\phi(p_1, q_1) = (p_1a, q_1b) = (p_2a, q_2b) = \phi(p_2, q_2)$.

2) ϕ is one-one: If $\phi(p_1, q_1) = (p_1 a, q_1 b) = (p_2 a, q_2 b) = \phi(p_2, q_2)$, then $p_1 a - p_2 a = um = ura$ and $q_1 b - q_2 b = svb = sn$ with $r, s \in \mathbb{Z}$ so that $p_1 - p_2 = ru, q_1 - q_2 = sv$.

3) ϕ is onto: Suppose $(pa, qb) \in H$. Then clearly, $\phi(p, q) = (pa, qb)$.

22. (a) Prove that R ⊕ R under addition in each component is isomorphic to C.
Solution. Define φ : R ⊕ R → C by φ(a, b) = a + ib. One checks that φ is an isomorphism.
(b) Prove that R* ⊕ R* under multiplication in each component is not isomorphic to C*.
Solution. Suppose φ : C* → R* ⊕ R* is an isomorphism. Then φ send identity to identity,
i.e. φ(1) = (1, 1). Then i ∈ C has order 4, and φ(i) = (a, b) must also have order 4.

i.e., $\phi(1) = (1,1)$. Then $-i \in \mathbb{C}$ has order 4, and $\phi(i) = (a,b)$ must also have order 4. However, $(1,1) = (a,b)^4 = (a^4,b^4)$ implies that $a,b \in \{1,-1\}$, and $(a,b)^2 = (1,1)$, which is a contradiction.

23. Let $a = (a_1, \ldots, a_n) \in G_1 \oplus \cdots \oplus G_n$. Determine the order of a in terms of those of a_1, \ldots, a_n . (Infinite order is possible.)

Solution. If a_j with infinite order, then the *j*th entries of $a^m = (a_1^m, \ldots, a_n^m)$ is not e_j for all $m \in \mathbb{N}$. Thus, *a* has infinite order. If $|a_j| = m_j$ is finite for each *j*, and if $a^m = (a_1^m, \ldots, a_n^m) = (e_1, \ldots, e_n)$. Thus, *m* is a common multiple of m_1, \ldots, m_n . Evidently, $m = \operatorname{lcm}(m_1, \ldots, m_n)$ is the smallest positive integer such that $a_j^m = e_j$ for all $j = 1, \ldots, n$.

- 24. (a) What is the order of the element 14 + ⟨8⟩ in Z₂₄/⟨8⟩?
 Solution. Note that H = ⟨8⟩ = {8, 16, 0}. Then 14 + H ≠ H, 2(14 + H) = 28 + H = 12 + H ≠ H, 3(14 + H) = 42 + H = 10 + H ≠ H, 4(14 + H) = 56 + H = 0 + H = H. Thus, 14 + H has order 4.
 (b) What is the order of 4U₅(105) in the factor group U(105)/U₅(105).
 Solution. Note that U₅(105) = {1, 11, 16, 26, 31, 41, 46, 61, 71, 76, 86, 101}. Then [4U₅(105)]² = 16U₅(105) = U₅(105). Thus, 4U₅(106) has order 2.
- 25. (a) Prove that if H ≤ G and |G : H| = 2, then H is normal.
 Solution. If |G : H| = 2, then there are two left cosets H, aH with a ∉ H, and G has two right cosets H, Ha such that aH = G H = Ha. So, H is normal.
 (b) Show that A_n is normal in S_n.
 Solution. Since |S_n : A_n| = 2, A_n is normal in S_n.
- 26. Let $G = \mathbb{Z}_4 \oplus U(4)$, $H = \langle (2,3) \rangle$ and $K = \langle (2,1) \rangle$. Show that G/H is not isomorphic to G/K.

Note that $H = \{(2,3), (0,1)\}$ and $K = \{(2,1) = (0,1)\}$. Then $G/H = \{(0,1) + H, (1,1) + H, (2,1) + H, (3,1) + H\}$ isomorphic to \mathbb{Z}_4 , and $G/K = \{(0,1) + K, (0,3) + K, (1,1) + K, (1,3) + K\}$ is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

- 27. Let G be a finite group, and H be a normal subgroup of G.
 (a) Show that the order of aH in G/H must divide the order of a in G.
 Solution. Suppose |a| = m. Then (aH)^m = eH = H. So, |aH| is a factor of m.
 (b) Show that it is possible that aH = bH, but |a| ≠ |b|.
 Solution. Suppose G = Z₆, H = {0,3}. Then 0 + H = 3 + H where |0| = 1 and |3| = 2.
- 28. If G is a group and |G : Z(G)| = 4, prove that G/Z(G) is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. Solution. If |G/Z(G)| = 4, it is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \otimes \mathbb{Z}_2$. If G/Z(G) is cyclic, then G is Abelian so that G = Z(G) and |G/Z(G)| = 1, a contradiction.
- 29. Suppose that $N \triangleleft G$ and |G/N| = m, show that $x^m \in N$ for all $x \in G$. Solution. By Lagrange theorem, $(xN)^m = eN = N$ in G/N. Thus, $x^m \in N$.
- 30. (a) Explain why x → 3x from Z₁₂ to Z₁₀ is not a homomorphism.
 (b) Prove that there is no isomorphism from Z₈ ⊕ Z₂ to Z₄ ⊕ Z₄.
 Solution. (a) In Z₁₂, [0] = [12]. But then φ([0]) = [0] ≠ [6] = [36] = φ([12]) in Z₁₀.
 (b) Note that (1,0) has order 8 in Z₈ ⊕ Z₂, but φ(1,0) ∈ Z₄ ⊕ Z₄ has order at most 4.
- 31. How many homomorphisms are there from \mathbb{Z}_{20} onto \mathbb{Z}_8 . How many are there to \mathbb{Z}_8 ? Solution. Note that a homomorphism $\phi : \mathbb{Z}_m \to \mathbb{Z}_n$ is completely determined by $\phi([1]_m) = [k]_n$ with $k = 0, 1, \ldots, n-1$. In order that ϕ is well-defined, $[x]_m = [y]_m$ should ensure $[kx]_n = [ky]_n$. The condition reduces to: m|(x-y) implies n|k(x-y), equivalently, n|km. It

will be an isomorphism if $\phi([i]) = [1]$ for some *i* because we can get $\phi([xi]) = [x]$ for every $x \in \mathbb{Z}_n$.

Thus, $\phi([1])$ is a homomorphism with $\phi([1]) = [k]$ if and only if k = 0, 2, 4, 6. Of course, none of these homomorphisms is onto.

- 32. Prove that φ : Z ⊕ Z → Z by φ(a, b) = a b is a homomorphism. Determine the kernel, and φ⁻¹({3}) = {(x, y) ∈ Z ⊕ Z : φ(x, y) = 3}.
 Solution. φ((a, b)+(c, d)) = φ(a+c, b+d) = (a+c)-(b+d) = (a-b)+(c-d) = φ(a, b)+φ(c, d) for any (a, b), (c, d) ∈ Z ⊕ Z. So, φ is an homomorphism.
 Ker(φ) = {(a, b) : 0 = φ(a, b) = a b} = {(a, a) : a ∈ Z}.
- 33. For each pair of positive integer m and n, show that the map from \mathbb{Z} to $\mathbb{Z}_m \oplus \mathbb{Z}_n$ defined by $x \mapsto ([x]_m, [x]_n)$ is a homorphism.
 - (a) Determine the kernel when (m, n) = (3, 4).
 - (b) Determine the kernel when (m, n) = (6, 4).
 - (c) (Extra 4 points.) Generalize the result.

Solution. The map is an homomorphism because for any $a, b \in \mathbb{Z}$,

$$\phi(a+b) = ([a+b]_m, [a+b]_n) = ([a]_m, [a]_n) + ([b]_m, [b]_n) = \phi(a) + \phi(b).$$

(a) $\phi(x) = ([x]_3, [x]_4) = ([0], [0])$ if and only if 3|x and 4|x. So, $Ker(\phi) = \{12k : k \in \mathbb{Z}\}$.

(b) $\phi(x) = ([x]_6, [x]_4) = ([0], [0])$ if and only if 6|x and 4|x. So, $Ker(\phi) = \{12k : k \in \mathbb{Z}\}$.

(c) $\phi(x) = ([x]_m, [x]_n) = ([0], [0])$ if and only if m|x and n|x. So, $Ker(\phi) = \{\ell k : k \in \mathbb{Z}\}$, where $\ell = \operatorname{lcm}(m, n)$.

34. (Optional.) Suppose $K \leq G$ and $N \triangleleft G$. Show that KN/N is isomorphic to $K/(K \cap N)$.

Solution. First, note that KN is a subgroup. Reason: $e \in KN$ is non-empty; if $k_1n_1, k_2n_2 \in KN$ then by the normality of N $(k_1n_1)(k_2n_2)^{-1} = k_1n_1n_2^{-2}k_2^{-1} = k_1n_3k_2^{-1} = k_1k_2^{-1}n_4 = k_3n_4 \in KN$ for some $n_3, n_4 \in N$ and $k_3 \in K$.

Second, note that $K \cap N$ is normal in K because $k(K \cap N)k^{-1} = kKk^{-1} \cap kNk^{-1} = K \cap N$ for any $k \in K$.

Third, note that N is normal in KN because $(kn)N(kn)^{-1} = knNn^{-1}k^{-1} = N$ for any $kn \in KN$.

Define $\phi: KN/N \to K/(K \cap N)$ by $\phi(knN) = \phi(kN) = k(K \cap N)$ for any $kn \in KN$.

It is well-defined: If $k_1n_1 = k_2n_2$, then $k_2^{-1}k_1 = n_2n_1^{-1} \in K \cap N$ so that $k_1(K \cap N) = k_2(K \cap N)$. It is 1-1: Note that all elements in KN/N has the form (kn)N = kN. If $\phi(k_1N) = \phi(k_2N)$ then $k_1(K \cap N) = k_2(K \cap N)$. Thus, $k_2^{-1}k_1 \in K \cap N \subseteq N$. Thus, $k_1N = k_2N$.

It is onto because for any $k(K \cap N)$ in $K/(K \cap N)$, we have $\phi(kN) = k(K \cap N)$.

Now, $\Phi((k_1N)(k_2N)) = \phi(k_1k_2N) = k_1k_2(K \cap N) = k_1(K \cap N)k_2(K \cap N) = \phi(k_1N)\phi(k_2N).$

35. (a) Let G be the group of nonzero real numbers under multiplication. Suppose r is a positive integer. Show that $x \mapsto x^r$ is a homomorphism. Determine the kernel, and determine r so that the map is an isomorphism.

(b) Let G be the group of polynomial in x with real coefficients. Define the map $p(x) \mapsto P(x) = \int p(x)$ such that P(0) = 0. Show that f is an homomorphism, and determine its kernel.

Solution. (a) Evidently, ϕ is well-defined and $\phi(xy) = x^r y^r = \phi(x)\phi(y)$ for all $x, y \in \mathbb{R}^*$. So, ϕ is an homomorphism. Now, $\phi(x) = x^r = 1$ if and only if (i) x = 1 or (ii) r is even and x = -1. So, $Ker(\phi) = \{1\}$ if r is odd, and $Ker(\phi) = \{1, -1\}$ if r is even.

If r is even, then $Ker(\phi) > 1$ so that ϕ is not injective and therefore not bijective.

If r is odd, then ϕ is one-one and every $x \neq 0$ has a unique real root $x^{1/r}$. So, ϕ is an isomorphism.

(b) Let $p(x) = a_0 + \cdots + a_n x^n$. Because we assume that $\phi(p(x)) = P(x)$ such that P(0) = 0, we have $\phi(p(x)) = a_0 x + a_1 x^2/2 + \cdots + a_n x^{n+1}/(n+1)$. Suppose p(x) and q(x) are two real polynomial. Then $\phi(p(x) + q(x)) = \int (p(x) + q(x)) = \int p(x) + \int q(x) = \phi(p(x)) + \phi(q(x))$. Here the integration constant is always 0 by assumption.

If p(x) is not the zero polynomial of degree $n \ge 0$, then $\int p(x)$ has degree n + 1 is nonzero. Thus, $Ker(\phi)$ contains only the zero polynomial.

36. Show that if $\phi : G_1 \to G_2$ is an homomorphism, and K is a normal subgroup of G_2 , then $\phi^{-1}(K)$ is a normal subgroup of G_1 .

Proof. It follows from the classnote, or the proof in the book. Let K be normal in G_2 and $H = \phi^{-1}(K)$ in G_1 . Then for any $a \in G_1$, consider aHa^{-1} . Since

$$\phi(aHa^{-1}) = \{\phi(a)\phi(h)\phi(a)^{-1} : h \in H\} = \phi(a)K\phi(a)^{-1} = K$$

by the normality of K in G_2 , we see that $H = \phi^{-1}(K) = aHa^{-1}$. So, H is normal in G_1 .

37. (a) Determine all homomorphisms from \mathbb{Z}_n to itself.

(b) Find a homomorphism from U(30) to U(30) with kernel $\{1, 11\}$ and $\phi(7) = 7$.

Solution. (a) Suppose $\phi(1) = k \in \mathbb{Z}_n$. For ϕ to be well-defined, we need a = b in \mathbb{Z}_n , i.e., n|(a-b) implies that ka = kb in \mathbb{Z}_n , which is always true. So, there are n homomorphisms. (b) Note that $U(30) = \{1, 7, 11, 13, 17, 19, 23, 29\} = \langle 7 \rangle \times \langle 11 \rangle$. Given $\phi(7) = 7$ and $\phi(11) = 1$, the homomorphism is completely determined. It is a 2 to 1 map such that $\phi(1) = \phi(11) = 1$, $\phi(7) = \phi(17) = 7$, $\phi(13) = \phi(23) = 13$, $\phi(19) = \phi(29) = 19$.

38. Let p be a prime. Determine the number of homomorphisms from $\mathbb{Z}_p \oplus \mathbb{Z}_p$ to \mathbb{Z}_p .

Solution. If ϕ is a homomorphism such that $\phi(1,0) = x$ and $\phi(0,1) = y$, then $\phi(a,b) = a\phi(1,0) + b\phi(0,1) = ax + by$. For each choice of $(x,y) \in \mathbb{Z}_p, \mathbb{Z}_p, (a_1,b_1) = (a_2,b_2)$ implies that $p|(a_1 - a_2)$ and $p|(b_1 - b_2)$. So, $p|(a_1x + b_1y - a_2x - b_2y)$. Thus, ϕ is well-defined, and satisfies $\phi((a,b) + (c,d)) = (a+c)x + (b+d)y = \phi(a,b) + \phi(c,d)$. So, ϕ is a homomorphism. Hence, there are p^2 choices.

39. Show that if M and N are normal subgroup of G and $N \leq M$, then (G/N)/(M/N) is isomorphic to G/M.

Solution. Consider $\phi: G/N \to G/M$ defined by $\phi(gN) = gM$.

To show that g is well-defined, let $g_1N = g_2N$ in G/N. Then $g_1^{-1}g_2 \in N \leq M$. Then $g_1M = g_2M$.

To show that g is a homomorphism, note that for any $g_1N, g_2N \in G/N$, $\phi(g_1Ng_2N) = \phi(g_1g_2N) = g_1g_2M = g_1Mg_2M = \phi(g_1N)\phi(g_2N)$.

To show that g is surjective, let $gM \in G/M$, then $\phi(gN) = gM$.

Consider the kernel of ϕ , we have $\phi(gN) = gM = M$ if and only if $g \in M$, i.e., $gN \in M/N = \{mN : m \in M\}$.

Now the image of ϕ is isomorphic to $(G/N)/Ker(\phi)$, the result follows.

40. (a) Give an example of a subset of a ring that is a subgroup under addition but not a subring.

(b) Give an example of a finite non-commutative ring.

Solution. (a) Let $H = \langle (2,3) \rangle \in \mathbb{Z} \oplus \mathbb{Z}$. Then $H = \{(2k, 3k) : k \in \mathbb{Z}\}$ is a subgroup under addition. But $(2,3)(2,3) = (4,9) \notin H$.

(b) Let $R = M_2(\mathbb{Z}_2)$. Then there are 2^4 elements because each entries has two choices. Clearly, $AB \neq BA$ if $A = B^t = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

41. Show that if m, n are integers and a, b are elements in a ring. Then (ma)(nb) = (mn)(ab). Solution. If m or n is zero, then both sides equal 0. If $m, n \in \mathbb{N}$, then

$$(\underbrace{a+\dots+a}_{m})(\underbrace{b+\dots+b}_{n}) = (\underbrace{ab+\dots+ab}_{mn}) = (mn)(ab).$$

If m is negative and n is positive, then (ma)(nb) + (|m|a)(nb) = ((m + |m|)a)(nb) = 0 so that (ma)(nb) = -(|m|n)(ab) = (mn)(ab). Similarly, if m is positive and n is negative, then (ma)(nb) = (mn)(ab). Finally, if m, n are negative, then (ma)(nb) = (-|m|a)(-|n|b) = |mn|(ab) = (mn)(ab).

42. Let R be a ring.

(a) Suppose $a \in R$. Shown that $S = \{x \in R : ax = xa\}$ is a subring.

(b) Show that the center of R defined by $Z(R) = \{x \in R : ax = xa \text{ for all } a \in R\}$ is a subring. Solution. (a) Note that $0 \in S$ is non-empty. Suppose $x, y \in S$. Then ax = xa and ay = ya. So, a(x - y) = ax - ay = xa - ya = (x - y)a. So, $x - y \in S$. Also, a(xy) = (xa)y = (xy)a. So, $xy \in S$. It follows that S is a subring.

(b) Note that $0 \in S$ is non-empty. Suppose $x, y \in Z(R)$. Then ax = xa and ay = ya. So, a(x - y) = ax - ay = xa - ya = (x - y)a for any $a \in R$. So, $x - y \in Z(R)$. Also, a(xy) = (xa)y = (xy)a for any $a \in R$. So, $xy \in Z(R)$. It follows that Z(R) is a subring.

43. Let R be a ring.

(a) Prove that R is commutative if and only if $a^2 - b^2 = (a+b)(a-b)$ for all $a, b \in R$.

(b) Prove that R is commutative if $a^2 = a$ for all $a \in R$.

Solution. (a) If R is commutative, then $(a + b)(a - b) = a^2 + ab - ba - b^2 = a^2 - b^2$ for any $a, b \in R$. Suppose $(a + b)(a - b) = a^2 + ab - ba - b^2 = a^2 - b^2$ for any $a, b \in R$. Then ab - ba = 0, i.e., ab = ba.

(b) Suppose $a^2 = a$ for all $a \in R$. Then for any $a, b \in R$, $a^2 + b^2 = a + b = (a+b)^2 = a^2 + ab + ba + b^2$ so that ab + ba = 0. Hence, ab = -ba so that $ab = (ab)^2 = (-ba)^2 = (-1)^2(ba)^2 = ba$.

44. Show that every nonzero element of \mathbb{Z}_n is a unit (element with multiplicative inverse) or a zero-divisor.

Solution. Let $k \in \mathbb{Z}_n$ be nonzero. If gcd(k, n) = d, then for $m = n/d \neq 0$ in \mathbb{Z}_n , we have km = rn = 0 for some $r \in \mathbb{Z}$. So, k (also, m) is a zero divisor. If gcd(k, n) = 1, then by the Euclidean algorithm, there are $x, y \in \mathbb{Z}$ such that kx + ny = 1. Thus, in \mathbb{Z}_n we have 1 = kx + ny = kx. Thus, $x \in \mathbb{Z}_n$ satisfies kx = 1. So, k is a unit.

45. (a) Given an example of a commutative ring without zero-divisors that is not an integral domain.

(b) Find two elements a and b in a ring such that a, b are zero-divisors, a + b is a unit.

Solution. (a) Let $R = 2\mathbb{Z}$. Then R has is a commutative ring without zero-divisors. But R has no unit. So, R is not an integral domain.

(b) Consider $2, 3 \in \mathbb{Z}_6$. Then 2, 3 are zero-divisors, and 2+3=5 is a unit as $5^2=1$.

46. (a) Give an example to show that the characteristic of a subring of a ring R may be different from that of R.

(b) Show that the characteristic of a subdomain of an integral domain D is the same as that of D.

Solution. (a) Consider \mathbb{Z}_4 and $S = \{0, 2\} \subseteq \mathbb{Z}_4$. Then $\operatorname{char}(\mathbb{Z}_4) = 2$ and $\operatorname{char}(S) = 2$.

(b) Suppose D' is a subdomain of D with unity 1. Then D' has a unity 1'. Note that $1' = 1 \cdot 1'$ in D, and $1' \cdot 1' = 1'$ in D'. So, $1' \cdot 1' = 1 \cdot 1'$ and 1 = 1' by cancellation. So, $\operatorname{char}(D) = \operatorname{char}(D') = |1|$.

47. An element a of a ring R is nilpotent if $a^n = 0$ for some $n \in \mathbb{N}$.

(a) Show that if a and b are nilpotent elements of a commutative ring, then a + b is also nilpotent.

(b) Show that a ring R has no nonzero nilpotent element if and only if 0 is the only solution of $x^2 = 0$ in R.

Solution. (a) Suppose $a^n = 0 = b^m$ with $n, m \in \mathbb{N}$. Because R is commutative, the Binomial theorem applies and

$$(a+b)^{n+m} = \sum_{j=0}^{n+m} \binom{n+m}{j} a^j b^{m+n-j} = 0$$

by the fact that $a^j = 0$ or $b^{n+m-j} = 0$ depending on $j \ge n$ or j < n.

(b) If there is a nonzero $x \in R$ satisfies $x^2 = 0$, then x is a nilpotent. If $y \in R$ is a nonzero nilpotent and k > 1 is the smallest positive integer such that $y^k = 0$, then $x = y^{k-1}$ satisfies $x^2 = y^{2k-2} = y^k y^{k-2} = 0$.

48. Show that the set of all nilpotent elements of a communitative ring is an ideal.

Solution. Let A be the set of nilpotent elements of a commutative ring R. First, $0 \in A$; if $x, y \in A$ so that $x^n = 0 = y^m$, then $(x - y)^{m+n} = 0$ by the same proof as in (a) of the previous question. Thus, $x - y \in A$. Moreover, if $z \in R$, then $(xz)^n = x^n z^n = 0$. So, A is an ideal.

49. (a) Given an example to show that a factor ring of an integral domain may have zero-divisors.(b) Give an example to show that a factor ring of a ring with zero-divisors may be an integral domain.

Solution. (a) Let $R = \mathbb{Z}$ and $S = 4\mathbb{Z}$. Then R/S is isomorphic to \mathbb{Z}_4 , which has zero divisors. (b) Let $R = \mathbb{Z}_4$ and $S = \{0, 2\}$. Then R has zero divisor 2, and R/S is isomorphic to \mathbb{Z}_2 has no zero divisors.

50. Suppose R is a commutative ring with unity and charR = p, where p is a prime. Show that $\phi: R \to R$ defined by $\phi(x) = x^p$ is a ring homomorphism.

Solution. Note that for k = 1, ..., p-1, $\binom{p}{k} = p!/(k!(p-k)!)$ is divisible by p. Thus, $\phi(x+y) = (x+y)^p = \sum_{j=0}^p \binom{p}{j} x^j y^{p-j} = x^p + y^p = \phi(x) + \phi(y)$, and $\phi(xy) = (xy)^p = x^p y^p = \phi(x)\phi(y)$. So, ϕ is a ring homomorphism.

- 51. Let R_1 and R_2 be rings, and $\phi: R_1 \to R_2$ be a ring homomorphism such that $\phi(R) \neq \{0'\}$.
 - (a) Show that if R_1 has unity and R_2 has no zero-divisors, then $\phi(1)$ is a unity of R_2 .

(b) Show that the conclusion in (a) may fail if R_2 has zero-divisors.

Solution. (a) Let $\phi(x) = y$ be nonzero in R_2 . Then $\phi(1)^2 \phi(x) = \phi(x) = \phi(1)\phi(x)$. Thus, $\phi(1)^2 = \phi(1)$ and $\phi(1) \neq 0$. For any $z \in R_2$, $\phi(1)^2 z = \phi(1)z$ so that $\phi(1)z = z$, and $z\phi(1) = z\phi(1)^2$ so that $z = z\phi(1)$. The result follows.

(b) Suppose $\phi : \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ such that $\phi(n) = (n, 0)$. Then $\phi(1) = (1, 0)$ is not the unity in $\mathbb{Z} \oplus \mathbb{Z}$.

- 52. Let R_1 and R_2 be rings, and $\phi: R_1 \to R_2$ be a ring homomorphism.
 - (a) Show that if A is an ideal of R_1 , then $\phi(A)$ is an ideal of $\phi(R_1)$.
 - (b) Give an example to show that $\phi(A)$ may not be an ideal of R_2 .

(c) (Optional, extra 2 points) Show that if B is an ideal of R_2 , then $\phi^{-1}(B)$ is an ideal of R_1 . Solution. (a) Suppose A is an ideal in R_1 . Then $0 \in R_1$, for any $a_1, a_2 \in A$ and $x \in R_1$, $a_1 - a_2, a_1y, ya_1 \in A$. Thus, for any $b_1, b_2 \in \phi(A)$ and $y \in \phi(R_1)$, we have $a_1, a_2 \in A$ and $x \in R_1$ such that $\phi(a_1) = b_1, \phi(a_2) = b_2$ and $\phi(x) = y$ so that $b_1 - b_2 = \phi(a_1) - \phi(a_2) = \phi(a_1 - a_2), b_1y = \phi(a_1)\phi(x) = \phi(a_1x), yb_1 = \phi(x)\phi(a_1) = \phi(xa_1) \in \phi(A)$. Thus, $b_1 - b_2, b_1y, yb_1 \in \phi(A)$. Hence $\phi(A)$ is an ideal in $\phi(R_1)$.

(b) Consider $\phi : \mathbb{R} \to M_2(\mathbb{R})$ defined by $\phi(x) = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$. Then ϕ is a ring homomorphism, and $\phi(\mathbb{R})$ is not an ideal.

(c) Suppose *B* is an ideal in R_2 . Then $0' \in R_2$, for any $b_1, b_2 \in B$ and $y \in R_2, b_1 - b_2, b_1 y, y b_1 \in B$. Now, for any $a_1, a_2 \in \phi^{-1}(B)$ and $x \in R_1$, we have $\phi(a_1), \phi(a_2) \in B$ and $\phi(x) \in R_2$ so that $\phi(a_1 - a_2) = \phi(a_1) - \phi(a_2), \phi(a_1 x) = \phi(a_1)\phi(x), \phi(xa_1) = \phi(x)\phi(a_1) \in B$. Thus, $a_1 - a_2, a_1 x, xa_1 \in \phi^{-1}(B)$. Hence $\phi^{-1}(B)$ is an ideal in R_1 .

53. If $\phi: R \to S$ is a ring homomorphism, prove that the map $\overline{\phi}: R[x] \to S[x]$ defined by

$$\bar{\phi}(a_0 + \dots + a_n x_n) = \phi(a_0) + \dots + \phi(a_n) x^n$$

is a ring homomorphism.

Solution. Let $f(x) = a_0 + \cdots + a_n x^n$, $g(x) = b_0 + \cdots + b_m x^m$. We may assume m = n by adding terms of the form $0x^k$ to the polynomial with lower degree. Then

$$\bar{\phi}(f(x) + g(x)) = \phi(a_0 + b_0) + \dots + \phi(a_n + b_n)x^n$$
$$= [\phi(a_0) + \dots + \phi(a_n)x^n] + [\phi(b_0) + \dots + \phi(b_n)x^n] = \bar{\phi}(f(x)) + \bar{\phi}(g(x)).$$
Also $f(x)g(x) = \sum_{k=0}^{2n} c_k x^k$ with $c_k = \sum_{i+j=k} a_i b_j$ for $k = 0, \dots, 2n$. So,

$$\bar{\phi}(f(x))\bar{\phi}(g(x)) = \left(\sum \phi(a_i)x^i\right)\left(\sum \phi(b_j)x^j\right) = \tilde{c}_k x^k$$

such that $\tilde{c}_k = \sum_{i+j=k} \phi(a_i)\phi(b_j) = \phi(\sum_{i+j=k} a_i b_j) = \phi(c_k)$ for $k = 0, \dots, 2n$. Thus,

$$\bar{\phi}(f(x))\bar{\phi}(g(x)) = \bar{\phi}(f(x)g(x)).$$

- 54. Let D be an integral domain.
 - (a) Show that for any two nonzero polynomials $f(x), g(x) \in D[x]$. Show that

$$\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x)).$$

(b) Show that a nonconstant polynomial in D[x] has no multiplicative inverse.

Solution. (a) Let $f(x) = a_0 + \cdots + a_n x^n$, $g(x) = b_0 + \cdots + b_m x^m$ with $a_n \neq 0$ and $b_m \neq 0$. Then $f(x)g(x) = \sum_{k=0}^{m+n} c_k x^k$ with $c_k = \sum_{i+j=k} a_i b_j$ for $k = 0, \ldots, m+n$. In particular, $c_{m+n} = a_n b_m \neq 0$ in D. Thus, $\deg(fg) = \deg(f) \deg(g)$.

(b) Suppose f(x) has degree $n \ge 1$. Then for any nonzero $g(x) \in D[x]$, f(x)g(x) has degree at least n by part (a). Thus, g(x) cannot be an inverse of f(x) in D[x].

55. Find an multiplicative inverse of 2x + 1 in $\mathbb{Z}_4[x]$, AND prove that the inverse is unique. Solution. Suppose f(x) = 2x + 1. Then $f(x)f(x) = 4x^2 + 4x + 1 = 1 \in \mathbb{Z}_4[x]$. Thus, f(x) is the inverse of itself. Suppose $g(x) = b_0 + \cdots + b_m x^m$ satisfies

$$1 = f(x)g(x) = (b_0 + \dots + b_m x^m) + 2x(b_0 + \dots + b_m x^m).$$

Then $b_0 = 1$, $2b_m = 0$, and $b_i + 2b_{i-1} = 0$ for i = m, ..., 1. We have $b_0 = 1$, $b_1 = 2$, and $b_i = 0$ for i = 2, ..., m. Thus, g(x) = f(x).

56. Let \mathbb{F} be a field and $p(x) \in \mathbb{F}[x]$. Suppose f(x) and g(x) has degrees less than p(x). Then

$$f(x) + \langle p(x) \rangle \neq g(x) + \langle p(x) \rangle$$

if and only if $f(x) \neq g(x)$.

Solution. If $f(x) \neq g(x)$, then f(x) - g(x) is nonzero and not a multiple of p(x). So, $f(x) - g(x) \notin \langle p(x) \rangle$. Thus, $f(x) + \langle p(x) \rangle \neq g(x) + \langle p(x) \rangle$.

The converse is clear.