Solve the following problems (5 points each).

1. Prove that the set of all 2×2 upper triangular matrices with entries from \mathbb{R} and determinant 1 is a group under matrix multiplication.

(Extra 2 points if you can prove the results for $n \times n$ upper triangular matrices.)

2. Prove that the set U(n) of elements in \mathbb{Z}_n relatively prime to n form a group under multiplication $\mod n$.

[Hint: If $a \in \mathbb{Z}_n$ satisfies gcd(a, n) = 1, there is $x, y \in \mathbb{Z}$ such that ax + ny = 1.]

- 3. Prove that a group G is Abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$.
- 4. Prove that in any group, an element and its inverse have the same order.

Recall that the order of an element g in a group G is $n \in \{1, 2, 3, ...\}$ if n is the smallest positive integer such that $g^n = e$, the identity. If no such positive number, we say that g has infinite order.

Hint: If g has order n, show that $(g^{-1})^n = e$ and no smaller positive number m will satisfy $(g^{-1})^m = e$.

5. Suppose that H is a proper subgroup of $\mathbb Z$ under addition and H contains 18,30 and 40, Determine H.

[Hint: Find the smallest positive number in H.]

- 6. Suppose H_{α} is a subgroup of a group G for every $\alpha \in J$. Show that $\bigcap_{\alpha \in J} H_{\alpha}$ is a subgroup of G.
- 7. Let H and K be subgroups of a group G. Show that $H \cup K \leq G$ if and only if $H \leq K$ or $K \leq H$.

[Hint: The (\Leftarrow) is clear. To prove (\Rightarrow) , suppose $H \cup K \leq G$. Assume by contradiction that there is $h \in H - K$ and $k \in K - H$. Then $hk \in H \cup K$ and]

8. (Extra credit) Give an example of G with distinct proper subgroups such that H_1, H_2, H_3 , whose union is a subgroup.