Math 307 Abstract Algebra Homework 5

Your name

Five points for each question.

- 1. Let (\mathbb{R}^+, \cdot) be the group of positive real number under multiplication. Show that $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ defined by $\phi(x) = \sqrt{x}$ is an group isomorphism.
- 2. Show that the following pair of groups are not isomorphic.

(a) $(\mathbb{Q}, +), (\mathbb{R}, +).$ (b) $(\mathbb{R}^+, \cdot), (\mathbb{R}^*, \cdot).$ (c) $(\mathbb{R}^*, \cdot), (\mathbb{C}^*, \cdot).$

[Recall that \mathbb{R}^* and \mathbb{C}^* are the sets of nonzero real numbers and nonzero complex numbers.]

- 3. Show that $G = \{e^{it} : t \in [0, 2\pi)\}$ under multiplication contains subgroups isomorphic to $(\mathbb{Z}, +)$ and $(\mathbb{Z}_n, +)$ for any $n \in \mathbb{N}$, and show that G is not a cyclic group.
- 4. Suppose ϕ_1, ϕ_2 are automorphisms of a group G. Show that $H = \{g \in G : \phi_1(g) = \phi_2(g)\}$ is a subgroup of G.
- 5. Let G be a group and $a \in G$. Suppose |a| = n and the inner automorphism $\phi_a : G \to G$ defined by $\phi_a(x) = axa^{-1}$ has order m in Aut(G). Show that m|n.

Give an example of G and a so that 1 < m < n.

[Hint: Show that $(\phi_a)^n$ is the identity map, and]

6. Suppose G is a group of order n, and $k \in \mathbb{N}$ is relatively prime to n. Show that $g: G \to G$ defined by $g(x) = x^k$ is one-one. If G is Abelian, show that g is an automorphism.

[Hint: To prove that g is bijective, it suffices to show that g is 1-1. It suffices to show that g(x) = e if and only if x = e.]

- 7. Suppose $1 \leq i < j \leq n$.
 - (a) Show that $(i, j) = (j, j-1)(j-1, j-2)\cdots(i+1, i)(i+1, i+2)\cdots(j-1, j)$.
 - (b) Show that every element $\sigma \in S_n$ is a product of transpositions of the form

$$(1,2), (2,3), \ldots, (n-1,n).$$

[Hint: To prove (a), show that the bijections on right sides will exchange i and j, and fixes all other k.]

8. (Extra 5 points) (a) Show that every $\sigma \in S_n$ is a product of the *n*-cycle $\alpha = (1, 2, ..., n)$ and $\tau = (1, 2)$.

[Hint: It suffices to use α, τ to generate all transpositions of the form (i, i+1)

for i = 1, ..., n - 1. To this end, show that for k = 1, ..., n - 1, $\alpha^k \tau \alpha^{-k} = (k, k + 1)$, equivalently, $\alpha^k \tau = (k, k + 1)\alpha^k$]

- (b) (Open problem) In (a), determine the minimum number of α and τ needed for a given σ .
- (c) (Conjecture) For n > 3, every σ is a product of no more than $\binom{n}{2}$ permutations in the set $\{\alpha, \alpha^{-1}, \tau\}$.