Chapter 0 Preliminaries

Assumption You are familiar with the material in Chapter 0 (Math 214 material).

Notation: $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.

Known results:

- Well-ordering principle; mathematical induction; complex numbers.
- Division algorithm on \mathbb{Z} : $gcd(a,b) = gcd(q_1,r_1) = gcd(q_2,r_2) = \cdots$.
- Greatest common divisor gcd(a, b) = xa + yb with $x, y \in \mathbb{Z}$.
- A prime p divides ab implies p|a or p|b;
- Fundamental Theorem of arithmetic.
- Functions (injective, surjective, bijective, composite, inverse functions; images, preimages).
- Equivalence relations (reflexive, symmetric, and transitive); partitions.
- modular arithmetic on $\mathbb{Z}_n = \{\overline{0}, \dots, \overline{n-1}\}$ with operations + and \cdot modulo n.

Checking your readiness

- Please review Chapter 0 and your notes in Math 214.
- You are not ready if you have difficulty in these topics.
- Check your readiness by doing Homework 1.
- If you have troubles in doing it. Come to homework session, form study group, ...

Goal of this course

- Learn basic algebraic structures/proof techniques to study advanced mathematics and other subjects.
- What is algebra (vs. analysis, geometry, etc.)?
- Algebra concerns the study of *algebraic structures* arising in number systems, geometrical symmetry, quantum physics!
- An algebraic structure is a set of objects (such as numbers, or symmetric transformations, or function/matrix operations) with one or more (binary) operations.
- Examples

 $\mathbb{N} = \mathbb{Z}^+, \mathbb{Z}, \mathbb{Q}, \mathbb{Q}^+, \mathbb{Q}^*, \mathbb{R}, \mathbb{R}^+, \mathbb{R}^*, \mathbb{C}, \mathbb{C}^*, M_n(\mathbb{R}).$

Examples of groups

We will first focus on algebraic structure with only one operation.

- The set of integer under addition. (G0) Closed. (G1) Associative. (G2) Identity. (G3) Inverse.
- The set of positive real numbers under multiplication.
- The set $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$ under addition modulo n.
- The set of permutations over $S = \{1, \ldots, n\}$ under function compositions.
 - (G4) Commutative (Abelian).

Chapter 1 Symmetry of squares and regular polygons

Examples of symmetry groups, subgroups, and group tables

- For a square, there are rotation symmetries: $R_0, R_{90}, R_{180}, R_{270}$, reflection symmetries: H, V, D, D'.
- These operations will "permute" the four corners of the square labeled by 1, 2, 3, 4, and generate 8 different permutations $\begin{pmatrix} 1 & 2 & 3 & 4 \\ i_1 & i_2 & i_3 & i_4 \end{pmatrix}$ in S_4 (the group of all permutations of $\{1, 2, 3, 4\}$. See the table in p. 33.
- The eight opertaions will form the dihedral group D_4 under composition.
- In general, for an regular *n*-side polygon with $n \ge 3$, we can form a **dihedral group** D_n .

Chapter 2 Groups

- We will begin with a structure *Group* with only one operation * in which we can solve the equation a * x = b.
- You will be amazed by the fact that very rich theory can be developed with a single operation satisfying some simple rules (axioms).

Definition of Binary operations A *binary operation* * on a set G is a rule assigning every pair of elements $a, b \in G$ a *unique* element c = a * b in G.

So, a binary operation is a function from $G \times G$ to G.

Examples ...

Definition of a group A binary structure (G, *) is a group if

- (G1) * is associative,
- (G2) there is an identity $e \in G$, and
- (G3) for every $a \in G$, there is an "inverse" $a' \in G$ so that a * a' = a' * a = e.

Remarks

- (G0): * is binary **must** be checked.
- By (G2), G is not empty. One needs to check (G2) before (G3).
- A group (G, *) is Abelian if * is commutative.
- Examples: $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +), (\mathbb{Q}^*, \cdot), \dots$

Properties Let (G, *) be a group.

- (a) The left and right cancellation law holds.
- (b) The equation a * x = b has a unique solution x for any $a, b \in G$, and so is the equation y * a = b.
- (c) The identity in a group is unique.
- (d) For each element in G, there is a unique inverse.
- (e) (Socks-Shoes Property) (a * b)' = b' * a' for any $a, b \in G$.

Isomorphisms and Group Tables

Group Isomorphism Two groups $(G_1, *_1)$ and $(G_2, *_2)$ are isomorphic if there is a bijection $\phi: G_1 \to G_2$ such that $\phi(a *_1 b) = \phi(a) *_2 \phi(b)$.

Example $(\mathbb{R}, +)$ and (\mathbb{R}^+, \cdot) ; $(\mathbb{Z}_n, +)$ and $(\{z \in \mathbb{C} : z^n = 1\}, \cdot)$.

Remrak For groups of small sizes, we can use the group table to check isomorphism.

All two element groups are isomorphic to $(\mathbb{Z}_2, +)$:

All three element groups are isomorphic to $(\mathbb{Z}_3, +)$.

	(α)	
	('	*
,	$(\mathbf{u},$	

\mathbb{Z}_3			(G,*)						
+	0	1	2		•	e	a	b	
0	0	1	2		e	e	a	b	
1	1	2	0		a	a	b	e	
2	2	0	1		b	b	e	a	

There are two non-isomorphic four element groups.

 $(\mathbb{Z}_4,+)$, and

the Klein 4-group (K, *): the set of 2×2 diagonal orthogonal matrices under multiplication.

There are only one five element group $(\mathbb{Z}_5,+)$ up to isomorphism.