Chapter 9 Normal subgroups and Factor Groups
Definition A subgroup H of a group is normal if aH = Ha for all a € G. We write H <G.

Theorem 9.1 A subgroup H is normal if and only if H is normal, i.e., gHg~! < H for all g € G.

Proof. Done in homework.

Theorem 9.2 Let H < G. Then G/H = {aH : a € G} is a group (known as the factor group) under the
operation (aH)(bH) = (ab)H if and only if H < G.
Proof. Key step: The operation is well-defined if and only if H is normal.



Example In Ss, the left cosets of H = {¢,(1,2)} do not form a factor group.
On the other hand, for each n > 2, S,,/A,, is a group isomorphic to Zs.

Remarks If G is Abelian (cyclic), then for any H < G the factor group G/H is Ablian (cyclic). Factor
groups of a cyclic (Abelian) group has the same property.
The order of aH € G/H is the smallest positive integer m such that ™ € H.

Theorems 9.3, 9.4 Let Z(G) be the center of G. Then G/Z(G) ~ Inn(G).
If G/Z(G) is cyclic, then G is Abelian.



Theorem 9.5 Let G be a finite Abelian group, and let p be a prime factor of |G|. Then G has an element

of order p.



Chapter 10 Group Homomorphisms and Normal subgroups

Definition Let (G, *1), (G2, *2) be groups. Then a function ¢ : G; — G3 is a group homomorphism if
d(a*1 b) = ¢(a) xo ¢p(b) for all a,b € G.

The kernel of ¢ is the set Ker(¢) = {a € G1 : ¢(a) = ex}.
Theorem 10.2 Suppose ¢ : G; — G> is a group homomorphism.

1. If H is a normal subgroup in G then ¢(H) is a normal subgroup in ¢(Gy).
2. If K is a (normal) subgroup of Ga, then ¢~ (K) = {a € G; : ¢(a) € K} is a (normal) subgroup of Gj.

In particular, Ker(¢) is normal in G.

Remark Consider ¢ : Zs — S3 such that ¢(1) = (1,2). Then H = Zs is a normal subgroup in Zs, but
¢(Z2) = {e,(1,2)} is not a normal subgroup in Ss.



Theorem 10.3 If ¢ : G; — G3, then the map ¢ : Gy /Ker(¢) — ¢(G1) defined by ®(gKer(¢)) = ¢(g) is an
isomorphsim from G;1/Ker(¢) to ¢(G1).
Proof. Let K = Ker(¢).
(1) @ is well-defined because ®(aK) = ®(bK) implies ...
2)
(3) @ is onto because ...
(4) ®(aKbK) = ... = $(aK)p(bK).

® is 1-1 because ...



Theorem 10.4 A subgroup N is normal in G if and only if it is N = Ker(¢) for some group homomorphism
from G to G.

Proof. If N = Ker(¢) then it is normal. If N is normal then ¢ : G — G/N by ¢(g) = gN is a
homomorphism and Ker(¢) = N.



Chapter 8/9 Internal and External Direct Products

Idea Decompose a large group into small subgroups, and combine several groups to form a larger group (to

get desired or undesired properties).

Definition Let G1, G2 be groups. The external direct product of G; and Gs is is the group G; & G =
{(91,92) : o1 € G1,g2 € G2} under the operation (z1,y1) * (z2,y2) = (1 * T2, Y1 * Y2).
One can extend the results to G = G1 & - - & Gg.

Some basic results

Theorem 8.1 Let g = (g1,...,95) € G1® - & Gg. If |¢1], ..., |gk| are finite, then |g| = lem(|g1],- .., |gk]);

if one of the |g;| is infinite, then |g| is infinite.

Theorem 8.2 Let G, ...,Gy be finite cyclic groups. Then G1 & - - - @ Gy, is cyclic if and only if
ged(|Gil, |Gy]) =1 for all 1 < 4,5 < k, equivalently, lem(|G1],...,|Gk|) = H§:1 |G

In particular, Z,,,...n, = Zn, ® - & Zy, if and only if ged(n;, n;) =1 for all i # j.

Remark If £ > 1 and one of the cyclic group G; is infinite, then G; & - - - @& G, is not cyclic.

Remark If Hy, H, are subgroups of G1, Gz, then Hy @ H; is a subgroup of G; & Ga. In particular, G; @ {e2}
and {e;} & G5 are normal subgroup of G; & G }.



Theorem If H, K are normal subgroups of G such that G = HK and H N K = {e}. Then G is isomorphic
to H® K ={(h,k):he H ke K}.

Proof. Define ¢ : H® K — G by ¢(h, k) = hk.

To prove that ¢ is bijective, we only use the fact that H, K are subgroups, H N K = {e} and HK = G.
Clearly, ¢ is onto because for every hk € HK = H X K, ¢(h, k) = hk. For one-one, if ¢(h, k) = hk = e, then
h=k '€ HNK sothat h=Fk =e.

To prove that ¢ is a homomorphism, we will use the fact that H, K are normal subgroups of G. Let
(h1,k1), (ho,ke) € H® K. We need to show the equality of ¢((h1,k1)(ha, ke)) = ¢(h1he, k1ki) = hihokike
and ¢(h, k1)p(ha, k2) = (h1k1)(hoks). We only need to prove that hoky = kiho, ie., hokihy 'yt € HNK =
{e}, which is true because hokihy ' € K and kihy 'hy! € H. O

Remark If H, K satisfy the conditions in the above theorem, we say that G is the internal direct product
of G. One may further decompose H and K, and write G is the internal direct product of normal subgroups
Hy, ..., Hyg.

Theorem 9.7 If G has p? elements for a prime p, then G is isomorphic to Z, or G is isomorphic to Z, & Z,,.
Consequently, G is Abelian.

Proof. Note that elements in G has order 1,p or p?. If G has an elements of order p?, then G is isomorphic
to Z,2. Otherwise, all elements in G not equal to e has order p. Let a # e and H = (a) = {e,a,...,aP"'}.

We show that H is normal. If not, there is b € G such that bab=! ¢ H. Note that bab—! has order p, and
HNH= {e}. Else, bab~! and a will generate the same subgroup, and bab~! = a/ € H.

By the counting theorem, |HH| = p? so that HH = G, Hence, b~! = a7 (bab~)* = a7ba*b~" for some
0 < j,k < p. Hence, e = a’ba” so that b = a=77%. So, bab~' € H, which is a contradiction. Similarly, we
can show that H is normal. Thus, G is isomorphic to H & H. O



Chapter 11 Fundamental Theorem of Finitely Generated Abelian Group

A groups G is finitely generated if there is a finite subset S = {a1,...,a,} of G such that every element

in G has the form g; - - - g,, for some positive integer m and g1,...,gm, € S.
Examples. Z,, is generated by {1}, and Z,, & Z is generated by {(1,0), (0,1)}.

Theorem 11.1 Every finitely generated Abelian group is isomorphic to a direct product of Z,,, & --- &
Zyn, ® ZP, where m; = p}” for some prime number p; and positive integer n; for each j, and a nonnegative

integer 8 known as the Betti number.

Corollary If G is a finite Abelian group, and m divides |G|, then G has a subgroup of order m.
Homework 8.

(But, there may not be an element of order m.)

Isomorphic classes of Abelian groups

Suppose |G| = 8,10, p?, pq, etc.

If |G| = 8, then G may be isomorphic to Zs,Zy @ Za,Zo ® Zo ® Zo. These groups are not isomorphic
because the first one has an element of order 8, the second one has no elements of order 8 and has an element
of order 4, the third group only has elements of order 1 and 2.

Not that Zs @ Zj4 is isomorphic to Z4 @ Zy by the map ¢(a,b) = (b, a).

If |G| = 10, then it is isomorphic to Z1o. Note that Zs ® Z is isomorphic to Z1g because (1,1) in Zs ® Zo
has order 10. So, Zs5 & Zs is a cyclic group with 10 elments.

If |G| = p?, then G is isomorphic to Z,2 or Z, ® Z, as shown before.

If |G| = pq, then G is isomorphic to Z,,. Note that Z, @ Z, is isomorphic to Z,, because (1,1) € Z, ®Z,
has order pq.



