
Chapter 9 Normal subgroups and Factor Groups

Definition A subgroup H of a group is normal if aH = Ha for all a ∈ G. We write H ◁ G.

Theorem 9.1 A subgroup H is normal if and only if H is normal, i.e., gHg−1 ≤ H for all g ∈ G.

Proof. Done in homework.

Theorem 9.2 Let H ≤ G. Then G/H = {aH : a ∈ G} is a group (known as the factor group) under the

operation (aH)(bH) = (ab)H if and only if H ◁ G.

Proof. Key step: The operation is well-defined if and only if H is normal.



Example In S3, the left cosets of H = {ε, (1, 2)} do not form a factor group.

On the other hand, for each n ≥ 2, Sn/An is a group isomorphic to Z2.

Remarks If G is Abelian (cyclic), then for any H ≤ G the factor group G/H is Ablian (cyclic). Factor

groups of a cyclic (Abelian) group has the same property.

The order of aH ∈ G/H is the smallest positive integer m such that am ∈ H.

Theorems 9.3, 9.4 Let Z(G) be the center of G. Then G/Z(G) ∼ Inn(G).

If G/Z(G) is cyclic, then G is Abelian.



Theorem 9.5 Let G be a finite Abelian group, and let p be a prime factor of |G|. Then G has an element

of order p.



Chapter 10 Group Homomorphisms and Normal subgroups

Definition Let (G1, ∗1), (G2, ∗2) be groups. Then a function ϕ : G1 → G2 is a group homomorphism if

ϕ(a ∗1 b) = ϕ(a) ∗2 ϕ(b) for all a, b ∈ G1.

The kernel of ϕ is the set Ker(ϕ) = {a ∈ G1 : ϕ(a) = e2}.
Theorem 10.2 Suppose ϕ : G1 → G2 is a group homomorphism.

1. If H is a normal subgroup in G1 then ϕ(H) is a normal subgroup in ϕ(G1).

2. If K is a (normal) subgroup of G2, then ϕ−1(K) = {a ∈ G1 : ϕ(a) ∈ K} is a (normal) subgroup of G1.

In particular, Ker(ϕ) is normal in G.

Remark Consider ϕ : Z2 → S3 such that ϕ(1) = (1, 2). Then H = Z2 is a normal subgroup in Z2, but

ϕ(Z2) = {ε, (1, 2)} is not a normal subgroup in S3.



Theorem 10.3 If ϕ : G1 → G2, then the map Φ : G1/Ker(ϕ) → ϕ(G1) defined by Φ(gKer(ϕ)) = ϕ(g) is an

isomorphsim from G1/Ker(ϕ) to ϕ(G1).

Proof. Let K = Ker(ϕ).

(1) Φ is well-defined because Φ(aK) = Φ(bK) implies ...

(2) Φ is 1-1 because ...

(3) Φ is onto because ...

(4) Φ(aKbK) = .... = ϕ(aK)ϕ(bK).



Theorem 10.4 A subgroup N is normal in G if and only if it is N = Ker(ϕ) for some group homomorphism

from G to G̃.

Proof. If N = Ker(ϕ) then it is normal. If N is normal then ϕ : G → G/N by ϕ(g) = gN is a

homomorphism and Ker(ϕ) = N .



Chapter 8/9 Internal and External Direct Products

Idea Decompose a large group into small subgroups, and combine several groups to form a larger group (to

get desired or undesired properties).

Definition Let G1, G2 be groups. The external direct product of G1 and G2 is is the group G1 ⊕ G2 =

{(g1, g2) : g1 ∈ G1, g2 ∈ G2} under the operation (x1, y1) ∗ (x2, y2) = (x1 ∗ x2, y1 ∗ y2).
One can extend the results to G = G1 ⊕ · · · ⊕Gk.

Some basic results

Theorem 8.1 Let g = (g1, . . . , gk) ∈ G1 ⊕ · · · ⊕Gk. If |g1|, . . . , |gk| are finite, then |g| = lcm(|g1|, . . . , |gk|);
if one of the |gi| is infinite, then |g| is infinite.

Theorem 8.2 Let G1, . . . , Gk be finite cyclic groups. Then G1 ⊕ · · · ⊕Gk is cyclic if and only if

gcd(|Gi|, |Gj |) = 1 for all 1 ≤ i, j ≤ k, equivalently, lcm(|G1|, . . . , |Gk|) =
∏k

j=1 |Gj |.

In particular, Zn1···nk
= Zn1

⊕ · · · ⊕ Znk
if and only if gcd(ni, nj) = 1 for all i ̸= j.

Remark If k > 1 and one of the cyclic group Gi is infinite, then G1 ⊕ · · · ⊕Gk is not cyclic.

Remark If H1, H2 are subgroups of G1, G2, then H1⊕H2 is a subgroup of G1⊕G2. In particular, G1⊕{e2}
and {e1} ⊕G2 are normal subgroup of G1 ⊕G2}.



Theorem If H,K are normal subgroups of G such that G = HK and H ∩K = {e}. Then G is isomorphic

to H ⊕K = {(h, k) : h ∈ H, k ∈ K}.
Proof. Define ϕ : H ⊕K → G by ϕ(h, k) = hk.

To prove that ϕ is bijective, we only use the fact that H,K are subgroups, H ∩K = {e} and HK = G.

Clearly, ϕ is onto because for every hk ∈ HK = H ×K, ϕ(h, k) = hk. For one-one, if ϕ(h, k) = hk = e, then

h = k−1 ∈ H ∩K so that h = k = e.

To prove that ϕ is a homomorphism, we will use the fact that H,K are normal subgroups of G. Let

(h1, k1), (h2, k2) ∈ H ⊕K. We need to show the equality of ϕ((h1, k1)(h2, k2)) = ϕ(h1h2, k1k1) = h1h2k1k2

and ϕ(h1, k1)ϕ(h2, k2) = (h1k1)(h2k2). We only need to prove that h2k1 = k1h2, i.e., h2k1h
−1
2 k−1

1 ∈ H∩K =

{e}, which is true because h2k1h
−1
2 ∈ K and k1h

−1
2 h−1

1 ∈ H. 2

Remark If H,K satisfy the conditions in the above theorem, we say that G is the internal direct product

of G. One may further decompose H and K, and write G is the internal direct product of normal subgroups

H1, . . . ,Hk.

Theorem 9.7 If G has p2 elements for a prime p, then G is isomorphic to Zp2 or G is isomorphic to Zp⊕Zp.

Consequently, G is Abelian.

Proof. Note that elements in G has order 1, p or p2. If G has an elements of order p2, then G is isomorphic

to Zp2 . Otherwise, all elements in G not equal to e has order p. Let a ̸= e and H = ⟨a⟩ = {e, a, . . . , ap−1}.
We show that H is normal. If not, there is b ∈ G such that bab−1 /∈ H. Note that bab−1 has order p, and

H̃ ∩H = {e}. Else, bab−1 and a will generate the same subgroup, and bab−1 = aj ∈ H.

By the counting theorem, |HH̃| = p2 so that HH̃ = G, Hence, b−1 = aj(bab−1)k = ajbakb−1 for some

0 ≤ j, k < p. Hence, e = ajbak so that b = a−j−k. So, bab−1 ∈ H, which is a contradiction. Similarly, we

can show that H̃ is normal. Thus, G is isomorphic to H ⊕ H̃. 2



Chapter 11 Fundamental Theorem of Finitely Generated Abelian Group

A groups G is finitely generated if there is a finite subset S = {a1, . . . , ar} of G such that every element

in G has the form g1 · · · gm for some positive integer m and g1, . . . , gm ∈ S.

Examples. Zn is generated by {1̄}, and Zn ⊕ Z is generated by {(1̄, 0), (0, 1)}.

Theorem 11.1 Every finitely generated Abelian group is isomorphic to a direct product of Zm1
⊕ · · · ⊕

Zmk
⊕Zβ , where mj = p

nj

j for some prime number pj and positive integer nj for each j, and a nonnegative

integer β known as the Betti number.

Corollary If G is a finite Abelian group, and m divides |G|, then G has a subgroup of order m.

Homework 8.

(But, there may not be an element of order m.)

Isomorphic classes of Abelian groups

Suppose |G| = 8, 10, p2, pq, etc.

If |G| = 8, then G may be isomorphic to Z8,Z4 ⊕ Z2,Z2 ⊕ Z2 ⊕ Z2. These groups are not isomorphic

because the first one has an element of order 8, the second one has no elements of order 8 and has an element

of order 4, the third group only has elements of order 1 and 2.

Not that Z2 ⊕ Z4 is isomorphic to Z4 ⊕ Z2 by the map ϕ(ā, b̄) = (b̄, ā).

If |G| = 10, then it is isomorphic to Z10. Note that Z5⊕Z2 is isomorphic to Z10 because (1, 1) in Z5⊗Z2

has order 10. So, Z5 ⊕ Z2 is a cyclic group with 10 elments.

If |G| = p2, then G is isomorphic to Zp2 or Zp ⊕ Zp as shown before.

If |G| = pq, then G is isomorphic to Zpq. Note that Zp⊕Zq is isomorphic to Zpq because (1̄, 1̄) ∈ Zp⊕Zq

has order pq.


