
Chapter 16 Polynomial Rings

Notation Let R be a commutative ring. The ring of polynomials over R in the indeterminate x is

the set

R[x] = {a0 + · · ·+ anx
n : n ∈ N, a0, . . . , an ∈ R}.

We can consider equality, addition, multiplication and degree of a polynomial f(x) ∈ R[x].

Theorem 16.1 If D is an integral domain, then D[x] is an integral domain.

Theorem 16.2 If F is a field, and f(x), g(x) ∈ F [x] with g(x) 6= 0, then there exist unique

polynomials q(x), r(x) such that f(x) = g(x)q(x) + r(x) with deg(r(x)) ≤ deg(g(x)).



Corollary Let F be a field, f(x) ∈ F[x], a ∈ F. Then the following holds.

(a) f(x) = (x− a)q(x) + f(a), i.e., f(a) is the remainder.

(b) (x− a) is a factor of f(x) if and only if f(a) = 0.

(c) If deg(f(x)) = n, then f(x) has at most n zeros, counting multiplicities.



Theorem If F is a finite field, then the nonzero elements in F is a cyclic group under multiplication.



Definition A principal ideal domain is an integral domain D in which every ideal has the form

〈a〉 = {ra : r ∈ D} for some a ∈ D.

Theorem 16.3-4 Let F be a field. Then F[x] is a principal ideal domain. In fact, for any ideal A

of F [x], A = 〈g(x)〉, where g(x) is a nonzero monic polynomial in A with minimum degree.



Example 1 Suppose f(x) = x2 − 2 ∈ Q[x] and A = 〈x2 − 2〉. Then

F = Q[x]/A = {ax + b + A : a, b ∈ Q}

is a field. For every nonzero ax+ b+A ∈ F, the multiplicative inverse is (ax− b)/(2a2− b2) +A as

(ax + b + A)((ax− b)/(2a2 − b2) + A)

= (a2x2 − b2)/(2a2 − b2) + A = (2a2 − b2)/(2a2 − b2) + A = 1 + A.

Here note that 2a2 − b 6= 0 because a, b ∈ Q. Note that by factor theorem, f(x) has no zeros in

Q. But x + A ∈ F is a solution of the equation y2 − 2 = 0, where 2 = 2(1 + A) = 2 + A, as

(x + A)2 − (2 + A) = (x2 − 2) + A = 0 + A.

Corollary Let F be a field and f(x) ∈ F[x]. Then A = 〈f(x)〉 is maximal if and only if f(x) 6=
g(x)h(x) for some polynomials g(x), h(x) of lower degrees.



Chapter 17 Factorization of Polynomials

Definition Let D be an integral domain. A polynomial f(x) in D[x] is reducible if f(x) = g(x)h(x)

for some polynomials g(x), h(x) ∈ D[x] such that both g(x), h(x) have degrees smaller than f(x).

If f(x) has degree at least 2 and not reducible, then it is irreducible.

Theorem 17.1 Let F be a field, f(x) ∈ F[x] with degree 2 or 3. Then f(x) is reducible over F if

and only if f(x) has a zero in F.



Theorem 17.2 Let f(x) ∈ Z[x]. Then f(x) is reducible over Q if and only if it is reducible over Z.

Proof. The content of f(x) = a0 + · · · + anx
n ∈ Z[x] is gcd(a0, . . . , an). If the content of f(x)

is 1, then f(x) is primitive.

Assertion 1. Suppose u(x), v(x) ∈ Z[x] are primitive. We claim that u(x)v(x) is primitive. If

not ...

Return to the proof of the theorem.

Suppose f(x) ∈ Z[x]. We may divide f(x) by its content and assume that it is primitive.

Suppose f(x) = g(x)h(x) so that g(x), h(x) ∈ Q[x] have lower degrees.

Then abf(x) = ag(x)bh(x) so that a, b ∈ N are the smallest integers such that ag(x), bh(x) ∈
Z[x]. Suppose c and d are the contents of ag(x) and bh(x), then abf(x) has content ab and

abf(x) = ag(x)bh(x) = (cg̃(x))(dh̃(x)) with has content cd. Thus, ad = cd and f(x) = g̃(x)h̃(x).

Clearly, if f(x) is reducible in Z[x], then it is reducible in Q[x].



Theorem 17.3 Let p be a prime number, and suppose f(x) = a0 + · · ·+ anx
n ∈ Z[x] with n ≥ 2.

Suppose f̃(x) = [a0]p + · · · + [an]px
n has degree n. If f̃(x) is irreducible then f(x) is irreducible

over Z (or Q).

Proof. If f(x) = g(x)h(x) then f̃(x) = g̃(x)h̃(x) has degree n implies that g̃(x) and g(x) have

the same degree and also h̃(x) and h(x) have the same degree. So, f̃(x) is reducible. �

Example Consider 21x3 − 3x2 + 2x + 9 ∈ Q[x].

Try x = m/n for m = 1, 3, 7, 21 and n = ±1, 3, 9.

Send it to Zp[x] for p = 2, 3, 5.

Example Consider (3/7)x4 − (2/7)x2 + (9/35)x + 3/5.

Send 35f(x) = 15x4 − 10x2 + 9x + 21 to Z2[x] and check irreducibility.



Theorem 17.4 Suppose f(x) = a0 + · · ·+ anx
n ∈ Z[x] with n ≥ 2. If there is a prime p such that

p does not divide an and p2 does not divide a0, but p|an−1, . . . , p|a0, then f(x) is irreducible over

Z.

Proof. Assume f(x) = g(x)h(x) with

g(x) = b0 + · · ·+ brx
r and h(x) = c0 + · · ·+ csx

s.

We may assume that p|b0 and p does not divide c0.

Note that p does not divide brcs so that p does not divide br.

Let t be the smallest integer such that p does not divide bt.

Then p|(bta0 + bt−1a1 + · · ·+ b0at) so that p|bta0, a contradiction. �

Example Show that 3x5 + 15x4 − 20x3 + 10x + 20 is irreducible over Q.



Corollary For any prime p, the pth cyclotomic polynomial

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ 1

is irreducible over Q.

Proof. Φ(y + 1) =
∑p

j=k

(
p
k

)
yk ...



Theorem 17.5 Let F be a field, and p(x) ∈ F[x]. Then 〈p(x)〉 is maximal if and only if p(x) is

irreducible.

Proof. If p(x) = g(x)h(x) then 〈p(x)〉 ⊆ 〈g(x)〉.
If A is an ideal not equal to F[x] and not equal to 〈p(x)〉 such that 〈p(x)〉 ⊆ A, then A = 〈g(x)〉

and p(x) = g(x)h(x) such that g(x) has degree less than p(x).

Corollary Let F be a field. Suppose p(x) is irreducible.

(a) Then F[x]/〈p(x)〉 is a field.

(b) If u(x), v(x) ∈ F[x] and f(x)|u(x)v(x), then p(x)|u(x) or p(x)|v(x).

Proof. (a) By the fact that D/A is a field if and only if A is a maximal.

(b) A = 〈p(x)〉 is maximal, and hence is prime....



Theorem 17.6 Every f(x) ∈ F[x] can be written as a product of irreducible polynomials. The

factorization is unique up to a rearrangement of the factors and multiples of the factors by the field

elements.

Proof. By induction on degree. f(x) =
∏

fi(x) such that every fi(x) is irreducible. If
∏

fi(x) =∏
gj(x), then fi(x) divides some gj ...


