Chapter 16 Polynomial Rings

Notation Let R be a commutative ring. The ring of polynomials over R in the indeterminate x is the set

$$R[x] = \{a_0 + \dots + a_n x^n : n \in \mathbb{N}, \ a_0, \dots, a_n \in R\}.$$

We can consider equality, addition, multiplication and degree of a polynomial $f(x) \in R[x]$.

Theorem 16.1 If \mathbb{D} is an integral domain, then $\mathbb{D}[x]$ is an integral domain.

Theorem 16.2 If \mathbb{F} is a field, and $f(x), g(x) \in F[x]$ with $g(x) \neq 0$, then there exist unique polynomials q(x), r(x) such that f(x) = g(x)q(x) + r(x) with $\deg(r(x)) \leq \deg(g(x))$.

Corollary Let \mathbb{F} be a field, $f(x) \in \mathbb{F}[x]$, $a \in \mathbb{F}$. Then the following holds.

- (a) f(x) = (x a)q(x) + f(a), i.e., f(a) is the remainder.
- (b) (x-a) is a factor of f(x) if and only if f(a)=0.
- (c) If deg(f(x)) = n, then f(x) has at most n zeros, counting multiplicities.

Theorem If \mathbb{F} is a finite field, then the nonzero elements in \mathbb{F} is a cyclic group under multiplication.

Definition A principal ideal domain is an integral domain \mathbb{D} in which every ideal has the form $\langle a \rangle = \{ra : r \in \mathbb{D}\}$ for some $a \in \mathbb{D}$.

Theorem 16.3-4 Let \mathbb{F} be a field. Then $\mathbb{F}[x]$ is a principal ideal domain. In fact, for any ideal A of F[x], $A = \langle g(x) \rangle$, where g(x) is a nonzero monic polynomial in A with minimum degree.

Example 1 Suppose $f(x) = x^2 - 2 \in \mathbb{Q}[x]$ and $A = \langle x^2 - 2 \rangle$. Then

$$\mathbb{F} = \mathbb{Q}[x]/A = \{ax + b + A : a, b \in \mathbb{Q}\}\$$

is a field. For every nonzero $ax + b + A \in \mathbb{F}$, the multiplicative inverse is $(ax - b)/(2a^2 - b^2) + A$ as

$$(ax + b + A)((ax - b)/(2a^2 - b^2) + A)$$

$$= (a^2x^2 - b^2)/(2a^2 - b^2) + A = (2a^2 - b^2)/(2a^2 - b^2) + A = 1 + A.$$

Here note that $2a^2 - b \neq 0$ because $a, b \in \mathbb{Q}$. Note that by factor theorem, f(x) has no zeros in \mathbb{Q} . But $x + A \in \mathbb{F}$ is a solution of the equation $y^2 - 2 = 0$, where 2 = 2(1 + A) = 2 + A, as $(x + A)^2 - (2 + A) = (x^2 - 2) + A = 0 + A$.

Corollary Let \mathbb{F} be a field and $f(x) \in \mathbb{F}[x]$. Then $A = \langle f(x) \rangle$ is maximal if and only if $f(x) \neq g(x)h(x)$ for some polynomials g(x), h(x) of lower degrees.

Chapter 17 Factorization of Polynomials

Definition Let \mathbb{D} be an integral domain. A polynomial f(x) in $\mathbb{D}[x]$ is reducible if f(x) = g(x)h(x) for some polynomials $g(x), h(x) \in \mathbb{D}[x]$ such that both g(x), h(x) have degrees smaller than f(x). If f(x) has degree at least 2 and not reducible, then it is irreducible.

Theorem 17.1 Let \mathbb{F} be a field, $f(x) \in \mathbb{F}[x]$ with degree 2 or 3. Then f(x) is reducible over \mathbb{F} if and only if f(x) has a zero in \mathbb{F} .

Theorem 17.2 Let $f(x) \in \mathbb{Z}[x]$. Then f(x) is reducible over \mathbb{Q} if and only if it is reducible over \mathbb{Z} . *Proof.* The content of $f(x) = a_0 + \cdots + a_n x^n \in \mathbb{Z}[x]$ is $gcd(a_0, \ldots, a_n)$. If the content of f(x) is 1, then f(x) is primitive.

Assertion 1. Suppose $u(x), v(x) \in \mathbb{Z}[x]$ are primitive. We claim that u(x)v(x) is primitive. If not ...

Return to the proof of the theorem.

Suppose $f(x) \in \mathbb{Z}[x]$. We may divide f(x) by its content and assume that it is primitive. Suppose f(x) = g(x)h(x) so that $g(x), h(x) \in \mathbb{Q}[x]$ have lower degrees.

Then abf(x) = ag(x)bh(x) so that $a, b \in \mathbb{N}$ are the smallest integers such that $ag(x), bh(x) \in \mathbb{Z}[x]$. Suppose c and d are the contents of ag(x) and bh(x), then abf(x) has content ab and $abf(x) = ag(x)bh(x) = (c\tilde{g}(x))(d\tilde{h}(x))$ with has content cd. Thus, ad = cd and $f(x) = \tilde{g}(x)\tilde{h}(x)$.

Clearly, if f(x) is reducible in $\mathbb{Z}[x]$, then it is reducible in $\mathbb{Q}[x]$.

Theorem 17.3 Let p be a prime number, and suppose $f(x) = a_0 + \cdots + a_n x^n \in \mathbb{Z}[x]$ with $n \geq 2$. Suppose $\tilde{f}(x) = [a_0]_p + \cdots + [a_n]_p x^n$ has degree n. If $\tilde{f}(x)$ is irreducible then f(x) is irreducible over \mathbb{Z} (or \mathbb{Q}).

Proof. If f(x) = g(x)h(x) then $\tilde{f}(x) = \tilde{g}(x)\tilde{h}(x)$ has degree n implies that $\tilde{g}(x)$ and g(x) have the same degree and also $\tilde{h}(x)$ and h(x) have the same degree. So, $\tilde{f}(x)$ is reducible.

Example Consider $21x^3 - 3x^2 + 2x + 9 \in \mathbb{Q}[x]$.

Try x = m/n for m = 1, 3, 7, 21 and $n = \pm 1, 3, 9$.

Send it to $\mathbb{Z}_p[x]$ for p=2,3,5.

Example Consider $(3/7)x^4 - (2/7)x^2 + (9/35)x + 3/5$.

Send $35f(x) = 15x^4 - 10x^2 + 9x + 21$ to $\mathbb{Z}_2[x]$ and check irreducibility.

Theorem 17.4 Suppose $f(x) = a_0 + \cdots + a_n x^n \in \mathbb{Z}[x]$ with $n \geq 2$. If there is a prime p such that p does not divide a_n and p^2 does not divide a_0 , but $p|a_{n-1}, \ldots, p|a_0$, then f(x) is irreducible over \mathbb{Z} .

Proof. Assume f(x) = g(x)h(x) with

$$g(x) = b_0 + \dots + b_r x^r$$
 and $h(x) = c_0 + \dots + c_s x^s$.

We may assume that $p|b_0$ and p does not divide c_0 .

Note that p does not divide $b_r c_s$ so that p does not divide b_r .

Let t be the smallest integer such that p does not divide b_t .

Then
$$p|(b_ta_0 + b_{t-1}a_1 + \cdots + b_0a_t)$$
 so that $p|b_ta_0$, a contradiction.

Example Show that $3x^5 + 15x^4 - 20x^3 + 10x + 20$ is irreducible over \mathbb{Q} .

Corollary For any prime p, the pth cyclotomic polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + 1$$

is irreducible over \mathbb{Q} .

Proof.
$$\Phi(y+1) = \sum_{j=k}^{p} {p \choose k} y^k \dots$$

Theorem 17.5 Let \mathbb{F} be a field, and $p(x) \in \mathbb{F}[x]$. Then $\langle p(x) \rangle$ is maximal if and only if p(x) is irreducible.

Proof. If p(x) = g(x)h(x) then $\langle p(x) \rangle \subseteq \langle g(x) \rangle$.

If A is an ideal not equal to $\mathbb{F}[x]$ and not equal to $\langle p(x) \rangle$ such that $\langle p(x) \rangle \subseteq A$, then $A = \langle g(x) \rangle$ and p(x) = g(x)h(x) such that g(x) has degree less than p(x).

Corollary Let \mathbb{F} be a field. Suppose p(x) is irreducible.

- (a) Then $\mathbb{F}[x]/\langle p(x)\rangle$ is a field.
- (b) If $u(x), v(x) \in \mathbb{F}[x]$ and f(x)|u(x)v(x), then p(x)|u(x) or p(x)|v(x).

Proof. (a) By the fact that D/A is a field if and only if A is a maximal.

(b) $A = \langle p(x) \rangle$ is maximal, and hence is prime....

Theorem 17.6 Every $f(x) \in \mathbb{F}[x]$ can be written as a product of irreducible polynomials. The factorization is unique up to a rearrangement of the factors and multiples of the factors by the field elements.

Proof. By induction on degree. $f(x) = \prod f_i(x)$ such that every $f_i(x)$ is irreducible. If $\prod f_i(x) = \prod g_j(x)$, then $f_i(x)$ divides some g_j ...