Chapter 16 Polynomial Rings

Notation Let R be a commutative ring. The ring of polynomials over R in the indeterminate x is

the set
R[l‘]:{a0+"'+an$n:n€Na aO?"'aaTLER}'

We can consider equality, addition, multiplication and degree of a polynomial f(z) € R|x].

Theorem 16.1 If D is an integral domain, then D[z] is an integral domain.

Theorem 16.2 If F is a field, and f(z),g(z) € Flz] with g(z) # 0, then there exist unique
polynomials g(x),r(x) such that f(z) = g(x)q(z) + r(x) with deg(r(x)) < deg(g(z)).



Corollary Let F be a field, f(z) € Flz], a € F. Then the following holds.
(a) f(x) = (z —a)q(z) + f(a), i.e., f(a) is the remainder.
(b) (x — a) is a factor of f(z) if and only if f(a) = 0.

(c) If deg(f(z)) = n, then f(x) has at most n zeros, counting multiplicities.



Theorem If F is a finite field, then the nonzero elements in I is a cyclic group under multiplication.



Definition A principal ideal domain is an integral domain D in which every ideal has the form
(a) = {ra : r € D} for some a € D.
Theorem 16.3-4 Let [ be a field. Then F[x] is a principal ideal domain. In fact, for any ideal A

of F[z], A= (g(z)), where g(z) is a nonzero monic polynomial in A with minimum degree.



Example 1 Suppose f(x) = 22 — 2 € Q[z] and A = (2% — 2). Then
F=Qz]/A={ar+b+A:a,becQ}

is a field. For every nonzero ax +b+ A € F, the multiplicative inverse is (ax — b)/(2a% — b?) + A as
(az 4+ b+ A)((ax — b)/(2a* — b?) + A)

= (a*2® —b%)/(2a® = b*) + A = (2a*> — b*)/(2a*> —V*) + A =1+ A.

Here note that 2a? — b # 0 because a,b € Q. Note that by factor theorem, f(x) has no zeros in
Q. But 2+ A € F is a solution of the equation y?> — 2 = 0, where 2 = 2(1 + A) = 2 + A, as
(x+A)?—2+4)=2*>-2)+A=0+A.

Corollary Let I be a field and f(z) € Flz]. Then A = (f(x)) is maximal if and only if f(z) #
g(z)h(x) for some polynomials g(z), h(x) of lower degrees.



Chapter 17 Factorization of Polynomials

Definition Let D be an integral domain. A polynomial f(z) in D[] is reducible if f(x) = g(z)h(z)
for some polynomials g(x), h(x) € D[z] such that both g(x), h(x) have degrees smaller than f(x).
If f(z) has degree at least 2 and not reducible, then it is irreducible.

Theorem 17.1 Let IF be a field, f(x) € F[z] with degree 2 or 3. Then f(z) is reducible over F if

and only if f(x) has a zero in F.



Theorem 17.2 Let f(x) € Z[z]. Then f(z) is reducible over Q if and only if it is reducible over Z.

Proof. The content of f(z) = ag+ - + apz™ € Z[z] is ged(ag, . .., an). If the content of f(z)
is 1, then f(z) is primitive.

Assertion 1. Suppose u(z),v(x) € Z[z] are primitive. We claim that w(z)v(z) is primitive. If
not ...

Return to the proof of the theorem.

Suppose f(z) € Z[z]. We may divide f(z) by its content and assume that it is primitive.
Suppose f(z) = g(x)h(x) so that g(z), h(xz) € Q[z] have lower degrees.

Then abf(x) = ag(z)bh(x) so that a,b € N are the smallest integers such that ag(z),bh(z) €
Z[z]. Suppose ¢ and d are the contents of ag(z) and bh(z), then abf(z) has content ab and
abf(x) = ag(x)bh(z) = (cg(x))(dh(x)) with has content cd. Thus, ad = c¢d and f(z) = §(x)h(z).

Clearly, if f(x) is reducible in Z[z], then it is reducible in Q[z].



Theorem 17.3 Let p be a prime number, and suppose f(z) =ag + -+ + apz™ € Z[z] with n > 2.
Suppose f(z) = [aoly + - + [an]pz™ has degree n. If f(z) is irreducible then f(x) is irreducible
over Z (or Q).

Proof. If f(z) = g(x)h(x) then f(z) = j(x)h(zx) has degree n implies that j(z) and g(x) have
the same degree and also h(z) and h(z) have the same degree. So, f(z) is reducible. O
Example Consider 2123 — 322 + 2z + 9 € Q[z].

Try & = m/n for m =1,3,7,21 and n = £1,3,9.

Send it to Zy[z] for p = 2,3, 5.

Example Consider (3/7)x* — (2/7)z% + (9/35)x + 3/5.

Send 35f(z) = 152* — 1022 + 92 + 21 to Zs[x] and check irreducibility.



Theorem 17.4 Suppose f(x) = ag+ - -+ apz™ € Z[x] with n > 2. If there is a prime p such that

p does not divide a,, and p? does not divide ag, but pla,_1,...,plag, then f(x) is irreducible over
Z.

Proof. Assume f(x) = g(x)h(z) with
g(x) =by+ -+ byx” and h(x) = co + - - + csz°.
We may assume that p|by and p does not divide cy.
Note that p does not divide b,-cs so that p does not divide b,..
Let ¢t be the smallest integer such that p does not divide b;.

Then p|(biag + b—1a1 + - - - + boar) so that plbiag, a contradiction. O

Example Show that 3z° 4+ 152* — 2023 + 102 + 20 is irreducible over Q.



Corollary For any prime p, the pth cyclotomic polynomial

P —1
D, (z) = o =Pl aP 241

is irreducible over Q.
Proof. ®(y+1) = Z;:k (g)yk



Theorem 17.5 Let F be a field, and p(x) € F[z]. Then (p(x)) is maximal if and only if p(z) is
irreducible.

Proof. If p(x) = g(x)h(x) then (p(z)) C (g(x)).

If A is an ideal not equal to F[z] and not equal to (p(z)) such that (p(z)) C A, then A = (g(z))
and p(x) = g(x)h(zx) such that g(x) has degree less than p(x).

Corollary Let F be a field. Suppose p(z) is irreducible.
(a) Then F[z]/(p(z)) is a field.
(b) If u(x),v(x) € Flz] and f(z)|u(x)v(z), then p(z)|u(z) or p(z)|v(z).
Proof. (a) By the fact that D/A is a field if and only if A is a maximal.

(b) A= (p(x)) is maximal, and hence is prime....



Theorem 17.6 Every f(z) € F[z] can be written as a product of irreducible polynomials. The
factorization is unique up to a rearrangement of the factors and multiples of the factors by the field
elements.

Proof. By induction on degree. f(z) = [] fi(z) such that every f;(x) is irreducible. If [] fi(z) =
[1g;(x), then f;(x) divides some g; ...



