16 Polynomial rings

Theorem. Let R be a ring. Then set of polynomials over R with indeterminate x

$$R[x] = \{a_0 + \dots + a_n x^n : n \in \mathbb{N}, a_0, \dots, a_n \in R, a_n \neq 0\}$$

is a ring under addition f(x) + g(x) and f(x)g(x), where for

$$f(x) = f_0 + \dots + f_n x^n$$
 and $g(x) = g_0 + g_1 x + \dots + g_m x^m$

- (1) $f(x) + g(x) = \sum (f_k + g_k) x^k$ where $f_{n+j} = g_{m+j} = 0$ for $j \in \mathbb{N}$,
- (2) $f(x)g(x) = c_k x^k$ with $c_k = \sum_{i+j=k} f_i g_j$ for k = 0, ..., n+m.

Remark If $f(x) = a_0 + \dots + a_n x^n$ with $a_n \neq 0$, then f(x) has degree n.

In general, $\deg(f+g) \le \max\{\deg(f), \deg(g)\}\ \text{and}\ \deg(fg) \le \deg(f) + \deg(g).$

The equality holds

A nonzero constant polynomial has degree 0; the zero polynomial has degree $-\infty$.

Theorem 16.1 If \mathbb{D} is an integral domain, then so is $\mathbb{D}[x]$. *Proof.* $\deg(fg) = \deg(f) + \deg(g)$. **Theorem 16.2** If \mathbb{F} is a field, then $\mathbb{F}[x]$ division algorithm can be performed, i.e., for every $f(x), g(x) \in \mathbb{F}[x]$ such that $g(x) \neq 0$. Then there is a unique q(x), r(x) such that $\deg(r) < \deg(g)$ satisfying f(x) = g(x)q(x) + r(x).

Proof. By induction on the degree of f.

• Initial step. The case f(x) = 0 is trivial.

*) Suppose $f(x) = f_0 \neq 0$ has degree 0. If $\deg(f) < g(x)$, then f(x) = g(x)0 + r(x) with r(x) = f(x) with degree less than that of g(x).

*) If $g(x) = g_0 \neq 0$, then $f(x) = (f_0/g_0)g(x) + r(x)$ with r(x) = 0 of degree $-\infty$, which is less than that of g(x).

- Inductive step. Suppose the result holds for $\hat{f}(x)$ of degree at most n-1 for $n-1 \ge 0$. Assume $f(x) = a_0 + \cdots + a_n x^n$, and $g(x) = b_0 + \cdots + b_m x^m$.
 - *) If n < m, then q(x) = 0, r(x) = g(x).
 - *) If $m \ge n$, then

$$f(x) - a_n b_m^{-1} x^{n-m} g(x) = f_1(x) = g(x)q_1(x) + r(x)$$

with $\deg(r) \leq \deg(g)$. So,

$$f(x) = g(x)(a_n b_m^{-1} + q_1(x)) + r(x).$$

• For uniqueness: If $f(x) = g(x)q(x) + r(x) = g(x)\hat{q}(x) + \hat{r}(x)$, then

$$g(x)[q(x) - \hat{q}(x)] = \hat{r}(x) - r(x).$$

So, $q(x) - \hat{q}(x) = 0$, else the degree on the left side is larger than that on the right side. \Box

Corollary Let \mathbb{F} be a field, $f(x) \in \mathbb{F}[x]$, $a \in \mathbb{F}$. Then the following holds.

- (a) f(x) = (x a)q(x) + f(a), i.e., f(a) is the remainder.
- (b) (x a) is a factor of f(x) if and only if f(a) = 0.
- (c) If $f(x) \in \mathbb{F}[x]$ has degree n, then f(x) has at most n zeros, counting multiplicities.

Proof. (a) Let f(x) = (x - a) + r, where $r \in \mathbb{F}$. Then f(a) = (a - a) + r = r.

(b) By (a), f(a) = 0 if and only if f(x) = (x - a)g(x).

(c) Induction on the degree of f(x). If n = 1, then f(x) = (x - a).

Assume the result holds for polynomial of degree n-1.

Suppose f(x) has degree n.

If f(x) has no zero in \mathbb{F} , then the conclusion holds.

If f(a) = 0, then f(x) = (x - a)g(x), and g(x) has at most n - 1 zeros. The result holds.

Theorem If \mathbb{F} is a finite field, then the nonzero elements in \mathbb{F} is a cyclic group under multiplication.

Proof. By FTFGG, (\mathbb{F}^*, \cdot) is isomorphic to $\mathbb{Z}_{p_1^{n_1}} \cdots \mathbb{Z}_{p_r^{n_r}}$. Consider the polynomial $x^N - 1 = 0$ with $N = |\mathbb{F}^*|$. There are at most N zeros. So, p_1, \ldots, p_r are distinct. The result follows.

Theorem Let \mathbb{F} be a field, and $f(x) = a_0 + \cdots + a_n x^n$ with $n \ge 2$ be irreducible, and $A = \langle f(x) \rangle = \{f(x)h(x) : h(x) \in \mathbb{F}[x]\}$. Then

$$\mathbb{E} = \mathbb{F}[x]/A = \{g(x) + A : g(x) \in \mathbb{F}[x]\} = b_0 + \dots + b_{n-1}x^{n-1} + A : b_0, \dots, b_{n-1} \in \mathbb{F}\}$$

is a field, containing $\mathbb{F} \equiv \{a + A : a \in \mathbb{F}\}\$ as a subfield. Moreover, $f(X) \subseteq \mathbb{E}[X]$ has a zero x + A.

Proof. Only needs to check that every \mathbb{E}^* has an inverse. This follows from the fact that for any $g(x) + A \in \mathbb{E}$, there is $r(x), s(x) \in \mathbb{F}[x]$ such that f(x)r(x) + g(x)s(x) = 1. So, s(x) + A is the inverse of g(x) + A.

Let $f(X) \in \mathbb{E}[X]$. Then f(x+A) = f(x) + A = A.

Construction of a new field containing zeros of irreducible polynomials

Example 1 Suppose $f(x) = x^2 + x + 1 \in \mathbb{Z}_2[x]$. Then ...

Example 2 Suppose $f(x) = x^2 + 1 \in \mathbb{Z}_3[x]$. Then

Remark Let $f(x) = x^2 + ax + b \in \mathbb{Z}_p[x]$. Then ...

Example 3 Suppose $f(x) = x^2 - 2 \in \mathbb{Q}[x]$ and $A = \langle x^2 - 2 \rangle$. Then

$$\mathbb{F} = \mathbb{Q}[x]/A = \{ax + b + A : a, b \in \mathbb{Q}\}$$

is a field. For every nonzero $ax + b + A \in \mathbb{F}$, the multiplicative inverse is $(ax - b)/(2a^2 - b^2) + A$ as

$$(ax + b + A)((ax - b)/(2a^{2} - b^{2}) + A)$$

= $(a^{2}x^{2} - b^{2})/(2a^{2} - b^{2}) + A = (2a^{2} - b^{2})/(2a^{2} - b^{2}) + A = 1 + A.$

Here note that $2a^2 - b \neq 0$ because $a, b \in \mathbb{Q}$.

By the factor theorem, f(x) has no zeros in \mathbb{Q} . But $x + A \in \mathbb{F}$ is a zero of the equation $y^2 - 2 \in \mathbb{E}[y]$ for $\mathbb{E} = \mathbb{F}[x]/A$ because 2 = 2(1+A) = 2+A, as $(x+A)^2 - (2+A) = (x^2-2) + A = 0+A$.

Fact: (a) Every finite field has $q = p^r$ elements for a prime p.

(b) For every $r \in \mathbb{N}$, there is an irreducible polynomial f(x) of degree r, which is a factor of $h(x) = x^{N-1} - x$ so that $\mathbb{Z}_p[x]/\langle f(x) \rangle$ has p^r elements.