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Problem Set 1.1

1 Give an example where a combination of three nonzero vectors in R? is the zero
vector. Then write your example in the form Ax = 0. What are the shapes of A and
zand 07

2 Suppose a combination of the columns of A equals a different combination of those
columns. Write that as Az = Ay. Find two combinations of the columns of A that
equal the zero vector (in matrix language, find two solutions to Az = 0).

3 (Practice with subscripts) The vectors @1, @2, . - ,an are in m-dimensional space
R™, and a combination ci@y + -+ + cnay, is the zero vector. That statement is at

the vector level.
(1) Write that statement at the matrix level. Use the matrix A with the a's in its
columns and use the column vector ¢ = (c1y++-» Cn)

(2) Write that staternent at the scalar level. Use subscripts and sigma notation to
add up numbers. The column vector a; has components ayj, @24, - - - » &mj-

4 Suppose A is the 3 by 3 matrix ones(3, 3) of all ones. Find two independent vec-
tors « and gy that solve Az = 0 and Ay = 0. Write that first equation Az = 0
(with numbers) as a combination of the columns of A. Why don’t I ask for a third
independent vector with Az=07

§  The linear combinations of v = {1,1,0) and w = (0,1, 1) fill a plane in R

(a) Find a vector  that is perpendicular to v and w. Then z is perpendicular to
every vector cv + dw on the plane: (cv +dw)Tz=cv z + dwTz=0+0.

(b) Find a vector u that is not on the plane. Check that uTz #0.

6 If three corners of a parallelogram are (1,1), (4,2), and (1, 3), what are all three of
the possible fourth corners? Draw two of them.

7 Describe the column space of A=v w v+ 2w)|. Describe the nullspace of A:
ali vectors = = (), T2, T3) that solve Az = 0. Add the “dimensions” of that plane
(the column space of A) and that line (the nullspace of A):

dimension of column space + dimension of nullspace = number of columns

8 A = CRisarepresentation of the columns of A in the basis formed by the columns
of C with coefficients in R. If Ay; = 4% is 3 by 3, write down Aand C and R.

9  Suppose the column space of an m by n matrix is ail of R3. What can you say about
m 7 What can you say about n? What can you say about the rank 77
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10  Find the matrices C; and Cs containing independent columns of A4, and A :

1 3 =2 1 2 3
Ay=|3 9 -6 Ay=14 5 6
2 6 —4 7 8 9

11 Factor eaf:h of those matrices into A = CR. The matrix R will contain the numbers
that multiply columns of C to recover columns of A.

This is one way to look at matrix multiplication: C times each column of R.

12  Produce a basis for the column spaces of A; and A;. What are the dimensions of
those column spaces—the number of independent vectors ? What are the ranks of
A; and Az ? How many independent rows in A; and Az ?

13  Create a 4 by 4 matrix A of rank 2. What shapes are C and R ?

Suppose two matrices A and B have the same column space.

(a) Show that their row spaces can be different.

(b) Show that the matrices C (basic columns) can be different.

(c) What number will be the same for A and B ?

ghih_—- Cu}.:ii, :ml dﬁrsﬂtl row of A is a combination of the rows of R. Which part of
ich matrix holds the coefficients in that combination—th i

the rows of R to produce row 1 of A? © numbers hat multiply

The rows of R are a basis for the row space of A. What does that sentence mean?

For these matrices with square blocks, find A = CR. What ranks ?
A =[ zeros ones ] A _[ Ay ] A A
o = !
ones Ones J, . 4 Al fagxa As [Al A ]axs

If A = CR, what are the C'R factors of the matrix [ g ﬁ ] ?

SEllmlganon" subtracts a number £;; times row j from row i: a “row operation.”
lh'ow ow those steps can reduce the matrix A in Example 4 to R (except that
is row echelon form R has a row of zeros). The rank won't change !

A=

O e
— b
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1 06 2
-+ = R=]0 1 2|=rref(4).
00O
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This page is about the factorization A = CR and its close relative A = CMR.
As before, C has r independent columns taken from A. The new matrix R has
independent rows, also taken directly from A. The r by 7 “mixing matrix” is M.
This invertible matrix makes A = CM R a true equation.

The rows of R (not bold) were chosen to produce A = CR, but those rows of
R did not come directly from A. We will see that R has the form MR (bold R).

Rank-1 example [2 4]_[2][1 2]:[:25][-15][2 4]

A=CR=CMR 3 6| 13

In this case M is just 1 by 1. How do we find M in otherexamplesof A = CMR?
C and R are not square. They have one-sided inverses. We invert CTC and RRT.

—GMER| CTART=CTC M RRT [M=(CTC) {(CTART)(RRT)"

Here are extra problems to give practice with all these rectangular matrices of rank 7.
CTC and RRT have rank 7 so they are invertible (see the last page of Section 1.3).

20  Show that equation (x) produces M = [ ] in the small example above.

1
2
21  The rank-2 example in the text produced A = CRin equation (2):

1 3 8 1 1 0 2
A=|126|=]1 01 2|=CR
01 2 0

Choose rows 1 and 2 directly from A to go into R. Then from equation (*), find the
2 by 2 matrix M that produces A = CM R. Fractions enter the inverse of matrices :

- b3 G2

-1
o [e »]H 1 d —b
Inverse of a 2 by 2 matrix [ c d ] = ad—bc[ . ] (#%)

29 Show that this formula (+*) breaks down if [ 3 ] = [ (; ] 1 dependent columns.

23 Create a 3 by 2 matrix A with rank 1. Factor AintoA=CRand A=CMR.
24  Create a 3 by 2 matrix A with rank 2. Factor Ainto A = CMR.

The reason for this page is that the factorizations A=CRand A= CM Rhave
jumped forward in importance for large matrices. When C takes columns directly
from A, and R takes rows directly from A, those matrices preserve properties
that are lost in the more famous QR and SVD factorizations. Where A = QR and
A = UTVT involve orthogonalizing the vectors, C and R keep the original data:

If A is nonnegative, so are C and R. If A is sparse, so are C and R.

(*)
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1.2 Matrix-Matrix Multiplication AB

Inner products (rows times columns) produce each of the numbers in AB = C':

. . e bia Ce .
Gy ap2 a3 v o bz | =]+ + ecas (n
. .+ by Coe

That dot product cz3 = (row 2 of A) - (column 3 of B) is a sum of a's times s :

row2of A
column 3 of B
give cg3 in C

3 T
cag = Gz21 by + a2a bag + azabas = Z Qakbrs and ¢ = Za’"" brj. (2
k=1 k=1

This is how we usvally compute each number in AB = C. But there is another way.

The pther way to multiply AB is columns of A times rows of B. We need to see this!
1 star.t with numbers to make two key points: one column u times one row vT produces a
matrix. Concentrate first on that piece of AB. This matrix uvT is especially simple :

“Outer T g |3 4 6] g g 12 “rank one
= = 12 =
product” 1 5 4 6 matrix”

An m by 1 rrllatrix (a column u) times a 1 by p matrix (a row vT) gives an m by p matrix.
Notice what is special about the rank one matrix uvT :

2
All columns of uwT are multiples of u = | 2 | All rows are multiples of vT = [3 4 6]
1

The C'Oll.lml:l space of uvT is one-dimensional: the line in the direction of u.
The dimension of the column space (the number of independent columns) is the rank
of the matrix—a key number. All nonzero matrices uv”™ have rank one. They are the
perfect building blocks for every matrix.

Notice also: The row space of uvT is the line through ». By definition, the row
space of any matrix A is the column space C(AT) of its transpose AT. That wag'( we stay

with column vectors. In the example, we transpose uvT (exchange rows with columns)
to get the matrix vuT :

T
6 8 12 6 6 3 31 (2 2 1
(w™T=|6 8 12| =f 8 8 4|=]4 . ]=vuT_
34 6 12 12 6 6
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The diagonal matrix A contains real eigenvalues Ay 10 A,. Every real symmetric matrix
Shasn orthonormal eigenvectors gy 10 q,,. When muitiplied by S, the eigenvectors keep
the same direction. They are just rescaled by the number A:

‘Egenvector q and eigenvalue A Sqg=M (5)

Finding A and g is not €asy for a big matrix. Butn pairs always exist when S is symmetric.
Qur purpose here is to see how SQ = QA comes column by column fromSq = A\g:

M
§Q=5|9 - 9 |T M@y - Anln [T 0 v Qg . =QA (6)
An
Multiply SQ = QA by Q0!=QfogetS= QAQT =2 symmetric matrix. Each
eigenvalue Ax and each eigenvector g contribute a rank one piece Aquq'{ to S.

Rank one pieces S = QANQT = (mayat + (Maqz)gs + 0 (Mntn)dn O

All symmetric The transpose of qiq] is 097 &

Please notice that the columns of QA are A1g; 10 And,. When you multiply a matrix on
the right by the diagonal matrix A, you multiply its columns by the A's.

We close with a comment on the proof of this Spectral Theorem S = QAQT:
Every symmetric § has n real eigenvalues and 7 orthonormal eigenvectors. Section 1.6
will construct the eigenvalues as the roots of the nth degree polynomial Pn(x} = deter-
minant of § — AL They are real numbers when § = ST. The delicate part of the proof
comes when an eigenvalue A; is repeated— it is a double root or an M th root from a factor
(A - AJ-)“ . In this case we need to produce M independent eigenvectors. The rank of
S — I mustbern = M. This is true when 5 = ST, But it requires 2 proof.

Similarly the Singular Value Decomposition A = VT requires extra patience when
a singular value & is repeated M times in the diagonal matrix ¥. Again there are M
pairs of singular vectors ¥ and » with Av = otk Again this true statement requires proof.

Notation for rows We introduced the symbols by, ..., b;, for the rows of the second
matrix in AB. You might have expected bl,..., bE and that was our original choice. But
this notation is not entirely clear—it seems to mean the transposes of the columns of B.
Since that right hand factor could be {f or Ror Qf or X =1 or VT, it is safer 1o 5a¥
definitely : we want the rows af that matrix.

G. Strang, Muitiplying and factoring matrices, Amer. Math. Monthly 125 (2018) 223-230.
G. Strang, Introduction to Linear Algebra, Sthed., Wellesley-Cambridge Press (2016).
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Problem Set 1.2
1 Suppose Az = 0 and Ay = O (wherez and ¥ and O are vectors). Put those two

statements together into one matrix equation AB = C. Wh i
into. = (. at are those maltrice:
and C ? If the matrix A is m by n, what are the shapes of Band C'? e

Suppose a and b are column vectors with components ay,. . -,@m and ) b
RN

g;lhn you multi_ply a times b¥ (yes or no)? What is the shape of the answer abl?
at number is in row %, column j of ab’ ? What can you say about aa®?

(Extension of Problem 2: Practice with subscripts) Instead of that one vector @
suppose %ou have 1 vectors a4 (0 @, in the columns of A. Suppose you have n

vectors by, ...y bY in the rows of B.
(a) Give a “sum of rank one” formula for the matrix-matrix product AB.
{b) Give a formula for lh? i', 4 entry of that matrix-matrix product AB. Use sigma
notation to add the i, entries of each matrix axby, found in Problem 2.

iu[')‘pose B has only one column (p = 1). So each row of B just has one number.
! ;s columns @, to a, as usual. Write down the column times row formula
or AB. In words, the m by 1 column vector AB is a combination of the ____.

ﬁtaﬁ with a matrix B. If we want to take combinations of its rows, we premultiply
y A to get AB. If we want 10 take combinations of its columns, we postmultiply b
C to get BC. For this question we will do both. ’

Row operations then column operations  First AB then (AB)C
Column operations then row operations First BC then A(BC)
‘The associative law says that we get the same final result both ways.
Verify (AB)C = A(BC) for A= [1 “] g=|t ] ¢={1 9
01 b3 bq T le 1 )
if A has columns a;,az,a3 and B = I is the identi i
. A , a3, = the identity matrix, what are th
matrices a1 by and asb; and azby ? They should add to AT = A. erankcone

Fuact: The coIPmns of.AB are combinations of the columns of A. Then the column
space 9f AB is contained in the column space of A. Give an example of A and B
for which AB has a smaller column space than A.

To compute C = AB = (mb
= y 1) (n by p), what order of the sam th
leads to columns times rows (outer products) ? e three commands

R . .
ows times columns Columns times rows

Fori=1ltom For.
Forj=1top Form
Fork=1ton Form

Cli,§) = C(, 7) + Ali, k) * Bk, ) =
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Problem Set 1.3

1 Show that the nullspace of AB contains the nullspace of B. If Bz = O then...

2  Findasquarc matrix with rank (A?) < rank (A). Confirm that rank (AT A) = rank (A).

3 How is the nullspace of C related to the nullspaces of A and B,ifC = [ ‘; ] ?

4  If row space of A = column space of A, and also N(A4) = N(AT),is A symmetric?

5 Four possibilities for the rank r and size 71,7 match four possibilities for Az = b.

Find four matrices Ay to Ay that show those possibilitics .

Az =Db has 1 solution for every b
Az =b has 1 or oo solutions
Az =b hasQor 1 solution

Az =b hasQoroo solutions

r=m="
r=m<n
r=n<m
r<m, TN

6  (Important) Show that AT A has the same nullspace as A. Here is one approach:
First, if Az equals zero then AT Az equals - This proves N(A)C N(AT A).
Second, if AT Az = 0 then £TAT Az = ||Az|]* = 0. Deduce N(AT4) = N(4).

7 Do A2 and A always have the same nullspace? A is a square matrix.

g  Find the column space C(A) and the nullspace N(A) of A= { g . Remember

that those are VECtor Spaces not just single vectors. This is an unusual example
with C(4) = N(A). It could not happen that C(A) = N{AT) because those two
subspaces are orthogonal.

9 Draw a square and connect its corners 10 the center point: 5 nodes and 8 edges.
Find the 8 by incidence matrix A of this graph (rank 7 = 9 ~ 1 = 4).
Find a vector  in N(A) and 8 — 4 independent vectors Y inN(AT).

10  If N(A)is the zero vector, what vectors are in the nullspace of B = A A A]?
11  For subspaces S and T of R with dimensions 9 and 7, what are all the possible
dimensions of
(i) SNT= {all vectors that are in both subspaces}
(i1) §4 T = f{all sums § +twithsin Sandtin T}
(1ii) gL = (all vectors in R'© that are perpendiculm" to every vector in S}.

1.4, Eliminationand A = LU
21

1.4 Elimination and A=LU

'tl'hhe first and most fundamental problem of linear algebra is to solve Az = b. We are given
, t: n by n matrix A and the n by 1 column vector b. We look for the solution vector .
components Iy, T2, - -« , L are the n unknowns and we have n equations Usuall
a square matrix A means only one solution to Az = b (but not always) W‘ y
x by geometry or by algebra. ye). We can S
Tl-us section begins with the row and column pictures of Az = b Then we solve th
equations by SIn.lplifying them—eliminate =y fromn — 1 equations to .get a smaller s sterﬁ
Ay = by of sizen—1. Eventually we reach the 1 by 1 system Anz, = by and weyl’cnow
ZTn = bn /zflﬂ. Working backwards produces Tn-1 and eventually \:re kngw xq and T
The point of this section is to see those elimination steps in terms of rank 1 matric 1s
E\.vef'y step (from A to Az and eventually to An) removes a matrix £z*. Then ;u;
original A is the sum of those rank one matrices. This sum is exactly the great fz:.clorizati
A = LU into lower and upper triangular matrices L and F—as we will see. >

A = L times U is the matrix descripti iminati
. : ption of elimination without row
That will be the algebra. Start with geometry for this 2 by 2 example. exehanges

i} 2 equations and 2 unknowns [ 1 =2 ] [ x ] _ [ 1 ]

2by2matrixinA:n=b 9 3 7 5 z=2y=1

2z +3y=9 1

Noti?e! I multiplied Az using inner products (dot products). Each row of the matrix A
n.mluPhec.i the vector z. That produced the two equations for x and ¥, and the two straight
lines in Figure 1.4. They meet at the solution z = 3,y = 1. Here is the row picture ®

3 1 =23[=]_11
2 3 y — 19 ]
2 4 @ = b
1 c—2y=1
At the solution

: BHEY

Fi . .
igure 1.4: The row picture of Az = b: Two lines meet at the solution z = 3,y = 1.

_1_

Fi . .
(Bgﬂzii;f‘zz)ﬂs';h includes the horizontal line 7y = T. I subtracted 2 (equation 1) from
 The unknown = has been eliminated from 7y = 7. This is the algebra:
1 -2 T
1
[2 3][3;]:[9] becomes 1 -2 Tl = 1 x=3
o 7 Y 7 y=1
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Again that elimination step rem

011
13 7=
2 4 8

Elimination on A produces two more rank one pieces.

1[0 1 1]
Lul+ 1 +
0

Row exchange by

a permutation P

When both sides of Az =b are mul

oved a rank one matrix £33

ARt
1 0

Then A = LU has three pieces:

{0][0 0 2] {0
1 =11/2
0 1

2 4 8 1 oolf2
pa=lo11|=} 0 10]}0
7 12 1 1}(0

13
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But A; is in a new place.

11
1 3 + Aa (10)
o0 0

1 0][2 4 8
11 p 1 1}. 1D
0o 0|l0 O 2

That last matrix U is triangular but the [ matrix is not! The pivot order for this A was

3,1,2. If we want the pivot rows to be

o001l 01 1 2 4 8
PA={1 00 1 3 7|=]01 1
010 2 4 8 1 37

tiplied by P, order is restored and PA=LU:

1,2, 3 we must move row 3 of Atothetop:

4 8
11| =LU. (12)
0 2

Every invertible n by n matrix A

leadsto PA=LU: P = permutation.

There are six 3 by 3 permutations: Six ways to order the ¢

1 exchange Paya =
(odd P) 28 =
Oor 2exchanges  p . -
123 =

(even P)

The inverse of every permutation matrix P

will also apply to the rig
remembers the exchanges wi

010 0
1 0 ) Pag]_ = 0
0 01 1
1 0
1 P:uz - 1

1 0

ows of the identity matrix.

]

Paar =

o
(=]
—

oo
-
—

1
0
0
0
0
1

= =] o= o

o O
oo
-t

is its transpose PT. The row exchanges
ht hand side b if we are solving Az = b. The computer just

thout actually moving the Tows.
There are 1! (n factorial) permutation matrices of size n: 3! = @32 =6

When A has dependent fows (no inverse), elimination leads to a Zero row and stops short.

1.4. Eliminationand A = LU 2
7

Problem Sét 1.4

1 Factor these matrices into A = LU :

_l21 111 2 -1 0
a=[2 ] A[ P
111 0 -1 2

2 If a1y,...,a1x is the first row of
oo a rank-1 matrix A and a;1,... i
(‘:;:‘umn. ﬁna‘ a formula for aij. Good to check when ay; =l 12’ a .ﬂ: 13ls lh*-’-_ﬁ i
en will your formula break down ? T am =&

3 What lower triangular matrix E i
; puts A into u tri =
Multiply by E~! = L to factor A into LU : Ll e S

-

4 . .
’;‘:;s \31:.::}:!1 s}lu.)ws how the one-.stgp inverses multiply to give L. You see this
= L is already lower triangular with 1’s on the diagonal. Then U = I:

T 100 1 1 00
iplyA=|e 1 0| byEy=|-a 1 andthenEa = (0 1 0
b ¢ 1 -b 0 1 0 —¢ 1 .

(a) Multiply E>E to find the single matrix E that produces EA = I
(b) Multiply E; E;* to find the matrix A = L.

[t R R ]
L3 e =
[ 3 S R e

The multipliers a, b, ¢ are mixed up in E = L~ but they are perfect in L

5 . .
Ii:l/(;i:]ezr; zero appears in a pivot position, A = LU is not possible! (We are requiri
ro pivots in U/.) Show directly why these LU/ equations are both impc?ssib;:eg'

[01]_10de 110 1 0
1 2 1 m n 1 i.

Th i
ese matrices need a row exchange by a permutation matrix P

Whi i

nee;c;l:i :sdm?:r-cflleads .to zero in the second pivot position? A row exchange is

P tont Th = LI will not be possible. Which ¢ produces zero in the third pivot
? Then a row exchange can’t help and elimination fails : ’

1 ¢ 0
2 4 1
3 5 1

A=




10

"
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(Recommended) Compute L and U for this symmetric matrix A:

a e a a
a b b b
A=abcc
a b c d

Find four conditions on a, b, ¢, d to get A = LU with four nonzero pivots.

Tridiagonal matrices have zero entries except on the main diagonal and the two adja-
cent diagonals. Factor these into A = LU. Symmetry further produces 4 = LDLT:

1 1 0 a a 0
A=1]1 2 1 and A= |a a+bd b
01 2 0 b b+c

Easy but important. 1f A has pivots 5, 9, 3 with no row exchanges, what are the pivots
for the upper left 2 by 2 submatrix Aa (without row 3 and column 3)7

Which invertible matrices allow A = LU (elimination without row exchanges)?
Good question! Look at each of the square upper left submatrices Ay, Az, ..., Ap.

All upper left submatrices A, must be invertible : sizes 1 by 1,2by 2,...,nbyn,

___because LU = [ Ly 0 ] [ Uk : ]

Explain that answer: 4, factors into . . 0

In some data science applications, the first pivot is the largest number |ai;| in A.
Then row i becomes the first pivot row u]. Column j is the first pivot column.
Divide that column by a;; so £, has 1 in row i. Then remove that £,u] from A.

This example finds az2 = 4 as the first pivot (¢ = j = 2). Dividing by 4 gives £; :

1 2] _{1/2}(3 4] [-1/2 O]_, . . _[1/2 1 3 4
[3 4]‘{1} "'[ o ofThuithu={1 of[-12 0
For this A, both L and U involve permutations. P, exchanges the rows to give L.
P, exchanges the columns to give an upper triangular U. Then PLAP; = LU.

Permuted in advance Py AP, = [1}2 (1)] [g —i-’2] - [‘21 :;]

. 1 3
Question for A = [2 4

] : Apply complete pivoting to produce Py AP, = LU.

If the short wide matrix A has m < n, how does elimination show that there are
nonzero solutions to Az = 0?7 What do we know about the dimension of that
“nullspace of A” containing all solution vectors z 7 The nullspace dimension is at
least

Suggestion: First create a specific 2 by 3 matrix A and ask those questions about A.

|
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I.5 Orthogonal Matrices and Subspaces

The word orthogonal appears everywhere in linear algebra. It means perpendicular.
Iis use extends far beyond the angle between two vectors. Here are important extensions of
that key idea:

1. Orthogonal vectors = and y. Thetestis @ Ty =z + - + Tnln = 0.

If  and y have complex components, change to ‘m‘Ty =T+ +Tayn =0.

2. Orthogonal basis for a subspace : Every pair of basis vectors has viv; =0.
Orthonormal basis : Orthogonal basis of unit vectors: every vFv; =1 (length 1),
From orthogonal to orthonormal, just divide every basis vector v; by its length ||v4]!.

3. Orthogonal subspaces R and N. Every vector in the space R is orthogonal to
every vector in N. Notice again! The row space and nullspace are orthogonal:

Az = 0 means mwl.ol'A e | = 0 )
eachrow .z = 0 mwﬂ'wa - 0 ’

Every row (and every combination of rows) is orthogonal to all  in the nullspace.
4, Tall thin matrices Q with orthonormal columns : QTQ =1

— 7 —

QTQ= 5 . q1.-Qn | =
T
AU qn

OO -
O = O

0
0|=1 (2)
1

If this @ multiplies any vector x, the length of the vector does not change:
1Qz|| = |jzi| because (Qz)(Qx) =2TQTQz =z 3

If m > n the m rows cannot be orthogonal in R™. Tall thin matrices have Q QT #1.

5. “Orthogonal matrices” are square with orthonormal columns : QT =Q1.
For square matrices QTQ = I'leadsto QQT =TI
For square matrices (, the left inverse Q7 is also a right inverse of Q.
The columns of this orthogonal n by n matrix are an orthonormal basis for R".
The rows of @ are a (probably different) orthonormal basis for R™.
The name “orthogonal matrix” should really be “orthonormal matrix™.

The next pages give examples of orthogonal vectors, bases, subspaces and matrices.
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Orthogonal Basis = Orthogonal Axes in R"

Suppose the n by n orthogonal matrix @ has columns gy, ..., qn. ‘Those unit vectors are
a basis for n-dimensional space R". Every vector v can be wriiten as a combination of the
basis vectors (the g's) :

v=¢ g+ -+, (13)

Those ¢, g, and c2q, and caqy, are the components of v along the axes. They are the
projections of v onto the axes ! There is a simple formula for each number c1 to ¢

Coefficients in

_ T
an orthonormal basis Cn = qpv (14)

—aT —aT
6 =qv cz =gV °°

I will give a vector proof and a matrix proof. Take dot products with g; in equation (13):
gfv=ciglq,+ - +endl@a =01 (15)
All terms are zero except c1g1 g, = 1. S0 gf v = ¢ and every giv = ck.
If we write (13) as a matrix equation v = Qc, multiply by QT to see (14):
Qv = QTQc = c givesall the coefficients cx = qzv at once.

“This is the key application of orthogonal bases (for example the basis for Fourier series).
When basis vectors are orthonormal, each coefficient ¢; to ¢, can be found separately !

Householder Reflections

Here are ncat examples of reflection matrices Q = H,. Start with the identity matrix.
Choose a unit vector 1. Subtract the rank one symmetric matrix ouu®, Then I — 2uuT
is a “Householder matrix”. For example, choose . = (1,1,...,1)/V/n.

Householder example

2
H,=I-2uut=1I- - ones (n, ). (16)

With uuT, H,, is surely symmetric. Two reflections give 2 = Ibecause uTu = 1:

HTH=H*=(I- 2uu’) (I — ouuT)=1- quuT +duuTuwut =1 (17

The 3 by 3 and 4 by 4 examples are easy 10 remember, and H, is like a Hadamard matrix :

1-1-1-1
1 -2 -2
H3=I—-2-ones=-1- -2 1 -2 H4=I—20nes=1 =1 1 =1l
3 2 -2 1 4 2|1-1-1 1-1
-1-1-1 1
Householder’s n by n reflection matrix has Hpu = (I -2uwuTu = v —2u = —u.

And H,w = -+w whenever w is perpendicular to u. The “eigenvalues” of H are
-1 (once) and +1 (n — 1 times). All reflection matrices have eigenvalues ~1 and 1.

L.5. Orthogonal Matrices and Subspaces 35

Problem Set 1.5

1 If « and v are orthogonal unit vectors, show that u + v is orthogonal to u — ».
What are the lengths of those vectors ?

2 Draw unit vectors u and v that are not orthogonal. Show that w = v — u(uTv) is
orthogonal to  (and add w to your picture).

3 Draw any two vectors z and v out from the origin (0, 0). Complete two more sides
to make a parailelogram with diagonals w = u + v and z = u — v. Show that
wTw + 2Tz is equal to 2uTu + 207w,

4 Key property-of every orthogonal matrix: |[Qx}|* = |iz||? for every vector x.
More than this, show that (Qz)T(Qy) = =Ty for every vector = and y. So
lengths and angles are not changed by Q. Computations with Q never overflow!

5  IfQisorthogonal, how do you know that Q is invertible and @~ ! is also orthogonal ?
If QT = Q7" and QF = Q5 ', show that Q1 Q2 is also an orthogonal matrix.

A permutation matrix has the same columns as the identity matrix (in some order).
Explain why this permutation matrix and every permutation matrix is orthogonal:

0100

0010
P= has orthonormal columns so PTP= and P71= .

%en a matrix is symmetric or orthogonal, it will have orthogonal eigenvectors,
This is the most important source of orthogonal vectors in applied mathematics.

Four eigenvectorsof that matrix P are z; = (1,1,1,1), 22 = (1,1,4%,4),
z3 = (1,i2,44,i%), and @4 = (1,4",i%4%). Multiply P times each vector to find
M, Az, Az, A;. The eigenvectors are the columns of the 4 by 4 Fourier matrix F'.

11 1 1
F 111 4{i -1 =i —=
Show that @ = 7531 2 1 _; has orthonormal columns : QTQ =1
1 ¢4 -1 4
Haar wavelets are orthogonal vectors (columns of W) using only 1, —1, and 0.
n=4 1 1 1 0
wo|1! 1 -1 10 Find WTW and W~ and the
1 -1 0 1 eight Haar wavelets for n = 8.
1 -1 0 -1

i |
L L
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Nondiagonalizable Matrices (Optional)
Suppose A is an eigenvalue of A. We discover that fact in two ways:
1. Eigenvectors (geometric) There are nonzero solutions to Az = Az.
2. Eigenvalues (algebraic) The determinant of A — Al is zero.

The number A may be a simple eigenvalue ora multiple eigenvalue, and we want o know its
multiplicity. Most eigenvalues have multiplicity M = 1 (simple eigenvalues). Then there
is a single line of eigenvectors, and det(A — AT) does not have a double factor.

For exceptional matrices, an eigenvalue can be repeated. Then there are IWo different
ways to count its multiplicity. Always GM < AM for each A:

1. (Geometric Multiplicity = GM) Count the independent eigenvectors for A
Look at the dimension of the nullspace of A=Al

2. (Algebraic Multiplicity = AM) Count the repetitions of A among the eigenvalues.
Look at the roots of det(A — AT) = 0.

If A has A = 4,4, 4, then that eigenvalue has AM = 3and GM = lor2or 3.
The following matrix A is the standard example of trouble. Its eigenvalue A = 0 is
repeated. It is a double eigenvalue (AM = 2) with only one eigenvector {GM =1).

A=0,0 but
1 eigenvector

-2 1

Y
0 -A[=N

CM=1 0

There “should” be two eigenvectors, because A* = 0 has a double root. The double
factor A2 makes AM = 2. But there is only one eigenvector z = (1,0). So GM = 1.
This shortage of eigenvectors when GM < AM means that A is not diagonalizable.
There is no invertibie eigenvector matrix. The formula A = XAX ™! fails.

AM = 2 A:[O (1)] has det(A — Al) =

These three matrices all have the same shortage of eigenvectors. Their repeated cigen-
value is A = 5. Traces are 10 and determinants are 25:

5 1 6 —~1 7 2
A=[0 5] and A=[1 4] and A=[_2 3]~

Those all have det(4 — AI} = (A — 5)°. The algebraic multiplicity is AM = 2. But
each A — 57 has rank r = 1. The geometric multiplicity is GM = 1. There is only one
line of eigenvectors for A = 5, and these matrices are not diagonalizable.

- u- T R N

1.6. Eigenvalues and Eigenvectots ; M

Problem Set .6

. cosd —sind
1 The rotation @ = [ sinf  cosd ] has complex eigenvalues A = cosf £ isind:

Q[ _:: ] =(c059+isin9)[ _i] and Q[ 1 ] = (cosﬂ—-isin&)[ Iz ]

Check that A\; + Az equals the trace of Q (sum @) + Q22 down the diagonal).
Check that (Al)(A?) equals the determinant. Check that those complex eigenvectors
are orthogonal, using the complex dot product &, + 2 (not just z; » @2 !).

What is @~ and what are its eigenvalues 7

2 Compute the eigenvalues and eigenvectors of A and A~*. Check the trace !

A:[? ﬂ and A“:[_}ﬁ (1)]

=1 . .
A !ms the _ eigenvectorsas A. When A has eigenvalues A, and Ay, its inverse
has eigenvalues

3 Find the eigenvalues of A and B (easy for triangular matrices) and A + B:

_[3 0 11 41
A—[l 1] and B=[0 3] and A+B=[1 4].

Eigenvalues of A + B (are equal to)(are not equal o) eigenvalues of A plus eigen-
values of B.

Find the eigenvalues of A and B and AB and BA:

1o 1 2 1
A-.[l 1] and B=[0 1] o AB=[1 g] ] BA=[? ﬂ

(a) Are the eigenvalues of AB equal to eigenvalues of A times eigenvalues of B?

(b) Are the eigenvalues of AB equal to the eigenvalues of BA?

(a) If you know that z is an eigenvector, the way to find A is to _

(b) If you know that A is an eigenvalue, the way to find z is to .

Find tI'1e eigenvalues and eigenvectors for both of these Markov matrices A and A%,
Explain from those answers why A'® is close to A™:

ae[8 2] =[]
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7

10

1

12

13

14

15

The determinant of A equals the product AjAz - An. Start with the polynomial
det{A — AI) separated into its 1 factors (always possible). Then set A=0:

det(A-)\I):()\l—/\)(Ag-/\)---()\ﬂ—)\} so detA= .
Check this rule in Example 1 where the Markov matrix has A = 1 and 3.

The sum of the diagonal entries (the trace) equals the sum of the eigenvalues:

A=[‘: 3] has  det(A — AI) = 32— (a+d)A+ad—bc=0.
The quadratic formula gives the eigenvalues A = (a+d+ \/_ )/2and A= .
Their sum is .IfAhas A —3and Ay = 4 thendet{A - M) = .

If A has Ay = 4 and Az = 5 then det(A — AT} = (A —4)(A —5) = A* - 9A +20.
Find three matrices that have trace & + d = 9 and determinant 20 and X = 4,5.

Choose the last rows of A and C' to give eigenvalues 4,7 and 1,2,3:
01 010
Companion matrices A= [* *] C=|0 0 1}.
* * %

The eigenvalues of A equal the eigenvalues of AT This is because det(A — Al)
equals det{AT — AJ). That is true because Show by an example that the
eigenvectors of A and AT are not the same.

This matrix is singular with rank one. Find three A's and three eigenveciors:

1 2 1 2
A.—.[z]p 1 2]=[4 2 4].
1 2 1 2

Suppose A and B have the same eigenvalues Ay, . . - Ap, with the same independent

eigenvectors Zy,. - -» Tn- Then A = B. Reason: Any vector 152 combination
e1&y + ¢+ + CnTp. What is Az? What is Bx?

Suppose A has eigenvalues 0, 3,5 with independent eigenvectors &, ¥, W

(a) Give a basis for the nullspace and a basis for the column space.
(b) Find a particular solution to Az = v + w. Find all solutions.
(c) Ax=w has no solution. If it did then would be in the column space.

(a) Factor these two matrices into A=XAX"L

1 2 11
A—[O 3] and A=[3 3].

) )

(b) 1FA = XAX~"then A% =( )( ) )and A7} =

A A

T R SR A e P

L6.

16

17

18
19

20

21

22

23

24

26
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S.uppose A = XAX™)., What is the eigenvalue matrix for A + 277 What is the
eigenvector matrix? Check that A + 27 = ( ){( )( )~%

True or false: If the columns of X (eigenveciors of A) are linearly independent, then

(a) Aisinvertible (b
(c) Xisinvertible (d)

A is diagonalizable

X is diagonalizable.

Write down the most general matrix that has eigenvectors [1] and [_].

True or false: If the eigenvalues of A are 2, 2, 5 then the matrix is certainly
{a) invertible {b) diagonalizable {c) not diagonalizable.

True or false: If the only eigenvectors of A are multiples of (1, 4) then A has
(2) noinverse (b} arepeatedeigenvalue  (c) nodiagonalization XAX-L

k . -
A* = XAk X ~! approaches the zero matrix as k —+ oo if and only if every A has
absolute value less than . Which of these matrices has A¥ — 0?

6 .9 6 .
A= [.4 .1] and Az [.1 2]
Diagonalize A and compute X A% X =1 to prove this formula for A*:

2 -1 1 k k
A= e _ 1143 1-3
[-—1 2] L ‘5[1_3k 1+3k].

The eigenvalues of A are 1 and 9, and the eigenvalues of B are —1 and 9:
. 5 4
A= [4 5] and B= [4 5].

5 4
Find a matrix square root of A from R = XvVAX~!. Whyi i
et of B . y is there no real matrix

Suppose the same X diagonalizes both A and B. The .
i . y have the same t
inA=XANX"'and B=XAX"". Prove that AB = BA. clgemvectons

Ihe transpose of A = XAX ! is AT = (X 1)TAXT. The eigenvectorsin ATy =
Ay lz;re the col';xmns of tl}rat matrix (X ~!)¥. They are often called left eigenvectors of
, because yT A = AyT. How do you multiply matrices to find this formula for A?

S i \ i -
um of rank-1 matrices A= XAX"!= Alzly'f +--+ l\nmn'y:-

When is a matrix A similar to its eigenvalue matrix A ?

A .
; ’:KiB !1\\ aBJ\_vilys have the same eigenvalues. But similarity requires a matrix B with
.Then Bisthe _____ matrix and A must have n independent ____.
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Problem Set 1.7

1

Suppose ST = § and Sz = )z and Sy = ay are all real. Show that
yTSz = AyTz and 2TSy =azTy and yTSz = =T Sy.

Show that yTT must be zero if A # « : orthogonal eigenvectors.

Which of S1, S2, Sa, Sa has two positive eigenvalues? Use a test, don’t compute the
A's. Also find an & so that TSz < 0, s0 S} is not positive definite.

5 6 -1 =2 1 10 1 10
5= [6 7] 2 [-2 -5] Sas [10 100] 54 = [10 101] '
For which numbers b and c are these matrices positive definite?

1 & 2 4 c b
S I b L
With the pivots in D and multiplier in L, factor each A into LDLT.

Here is a quick “proof™ that the eigenvalues of every real matrix A are real:

xT Az real

Tz

False proof Az = Az gives 2T Az = zTx so A= '

Find the flaw in this reasoning—a hidden assumption that is not justified. You could
test those steps on the 90° rotation matrix [0 —1; 1 0] with A =1 and « = (3, 1).

Write S and B in the form A 12T 4 Aoz} of the spectral theorem QAQT:

s=[2 3] B=[i 1) Cerlanli=leat=0)

(Recommended) This matrix M is antisymmetric and also ____. Then all its
eigenvalues are pure imaginary and they also have |A] = 1. (| Mz| = li=|| for every
x 5o || Ax|| = |jz]| for eigenvectors.) Find all four eigenvalues from the trace of M:

0o 1 1 1

1 |-1 0 -1 1
M‘ﬁ -1 1 0 -1
-1 -1 1 0

can only have eigenvalues i or — 1.

Show that this A (symmetric but complex) has only one line of eigenvectors:

A=[i

1 _t] is not even diagonalizable: eigenvalues A = 0 and 0.

AT = A is not such a special property for complex matrices. The good property is

AT = A. Thenall eigenvalues are real and A has n orthogonal eigenvectors.

o

i e

8

10

Tt 0 b g

"

12

13
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This A is nearly symmetric. But its eigenvectors are far from orthogonal:

o o100
A'[o 141015

. 1
] has eigenvectors [ 0] and (7]
What is the angle between the eigenvectors?
Which symmetric matrices 8 are also orthogonal? Then ST = § and ST =581,

(a) Show how symmetry and orthogonality lead to 5% = I.
(b} What are the possible eigenvalues of S ? Describe all possible A.

Then S = QAQT for one of those eigenvalue matrices A and an orthogonal Q.

If S is symmetric, show that ATS 4 is also symmetric (take the transpose of ATSA).
Here A is m by n and S is m by m. Are eigenvalues of § = eigenvalues of ATSA?

in case A is square and invertible, ATSA is called congruent to S. They have

the same number of positive, negative, and zero eigenvalues: Law of Inertia.

Here is a way to show that @ is in between the eigenvalues A; and Ag of S':

a b
s=15 <]
Shovnf that det (S — AJ) is negative at A = a. So the parabola crosses the axis left
and right of A = a. It crosses at the two eigenvalues of S so they must enclose a.

A b
b ¢ |

det (§ — AI) = A2 —ak —cA+ac—b?
is a parabola opening upwards (because of A%)

The n— 1 eigenvalues of A always fall between the n eigenvaluesof S = [

Section II1.2 will explain this interlacing of eigenvalues.

The energy :.':T:S'm = 2z, certainly has a saddle point and not a minimum at (0, 0).
What symmetric matrix S produces this energy? What are its eigenvalues?

Test to see if AT A is positive definite in each case: A needs independent columns.

11
1 2
A=[]andA=12 d=112
0 3 21anA121'

Find the 3 by 3 matrix S and its pivots, rank, eigenvalues, and determinant:

Ty
Ty | = 4(z; — zo + 223)%
I3

{21 =2 z]| §
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er left determinants of S to establish positive definiteness.

15 Compute the three upp
ive the second and third pivots.

Verify that their ratios g
2 20
Pivots = ratios of determinants S = |2 5 3].
0 3 8

16 For what numbers ¢ anddare S and T positive definite? Test their 3 determinants:

¢ 1 1 1 3
§=11 ¢ 1 and T=12 4].
1 1 ¢ 3 5

4 ¢ > 2bthathasa negative eigenvalue.

o T

17  Find a matrix witha > 0andc >0 and @
r even worse, a negative number)

matrix cannot have a zero {0
TSz >0

18 A positive definite
. Show that this matrix fails to have T

on its main diagonal

4 1 1 I

[z @2 z3) |1 0 2} |%2 is not positive when (z1,22,23) = ( » > }.
1 2 5 T3

of a symmetric matrix cannot be smaller than all the \'s. I it

eigenvalues and would be positive definite.

ble by Problem 18.
sare root QVAQT

19 A diagonal entry Sjj
were, then § — g;; 1 would have
But§ —gj;jfhasa o0 the main diagonal, impossi

20 From S = QAQT compute the positive definite symmetric sq
of each matrix. Check that this square root gives ATA= 8

5 4 10 6

S={4 5] and S—[g 10}.

29  Draw the tilted ellipse z° +xy + y* = land find the half-lengths of its axes from
the eigenvalues of the corresponding matrix S.

ation § = ATA, with A = VDL, the square roots of the

992  In the Cholesky factoriz
| of A. Find A (upper triangular) for

pivots are on the diagona
9 0
0 2
0

S = and g =

111
1 2 2
1 2 7

0
1
2 8

TGy > 0 whenevery # 0) and A has indepen-

23 Suppose C is positive definite (so ¥
the energy test to zT ATC Az

dent columns (so Az # 0 whenever = # 0). Apply
o show that § = ATCA is positive defi

nite: the crucial matrix in engineering.
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R

24

25

26

27

28

Note

The Minimum of a Function F(z, y, z)

Wh ini
at tests would you expect for a minimum point ? First come zero slopes:

First derivatives are @ = QE = oF .
zero oo = 5y~ 9z = 0 at the minimum point.

Next comes the linear algebra version of the usual calculus test d*f/dz? > 0:

e F;
Second derivative matrix H is positive definite H= F:: § Ty ?—nz
vy Lyz
Here Fry = B (oF) _ a (oF . = Py B
YU 9z\dy) ay E) = F is a ‘mixed” second derivative.

FOrF]_(m y) ==k l$4+m2 2

j ' a y+y° and Fa(x =23 - S
matsices H, and Hy (the Hessian m :t(ri;: 2); 23+ zy—z find the second derivative
9%F/8x®
0%F/8ydz

0°F [ 0zdy

9F / 2 ] is positive definite

Test for minimum K = [

H is positive definite so F) is concav
' : e up (= convex). Find the minim i
Find the saddle point of F, (look only where first derivatives are zero)um et

— sin 9] [2 0] cos®
cos@| |0 5} [— sin @

(b) the eigenvalues of S

(d) a reason why S is symmetric positive definite.

cos @

sin g

sin@
cos 6] » find

Without multiplying § = |:

{a) the determinant of &
(c) the eigenvectors of S

For which a and c is this matrix positi i
\ ositive d ? i is i iti
s s deﬁnitg) ; efinite ? For which a and c is it positive

a a 1} All 5 tests are possible.

S=
The energy =" 92 equals

(o +2 + 25+ e(aa - 7).

a a+ec a-—c
a a—c atc

Important! Suppose S is positive definite with eigenvalues A; > A2 > ... 2 A
(a) What are the eigenvalues of the matrix A, [ — 57 Is it positiv; sem:d:a;i' it ¥ "
(b) How does it follow that \yzTz > TSz for every z? "
(c) Draw this conclusion: The maximum value of TSz /z Tz is A

Another way to 28 (¢): Maximize =7 S subject to the condition ::T:c =1,

This lead 9 ror
sto = E: Sz~ (xTx—1)] =0and then Sc=Xzand A = A,.



