Objective of the course

Introduce how to use linear algebra techniques to solve practical problems in:

Image processing, Differential equations, Difference equations, Quantum Computing, Optimization, Deep Learning, etc.

A simple description of Deep Learning and Neural Network model.

• A simple example. Identify the images of $0, \ldots, 9$ using training data x_1, \ldots, x_n .

• Apply functions F(x) so that it will correctly identify the outcome.

- It turns out that functions of the form $F(x) = L(R(L(R(\cdots(x)))))$, where L(x) = Ax + b and $R(x) = (\max(0, x_1), \dots, \max(0, x_n))^T$ for $x = (x_1, \dots, x_n)^T$ work well.
- In the neural network setting, one uses the input v to adjust $L_k = A_k v_{k-1} + b_k$, to produce a new hidden layer.
- The composite function $F(v) = L_k(R(L_{k-1}(R\cdots(v))))$ adds depth to the network and leads to more successful model.

$$A(xx) = Ax + Ay$$

Basic notation and background

Z2, Z3, Z1

• $M_n(\mathbb{F})$, $M_{m,n}(\mathbb{F})$ are the set of $n \times n$ and $m \times n$ matrices over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} (or a general field).

$$z = x + iy = \underbrace{\rho}_{z} e^{i\theta}, \ \rho = |z| = |\bar{z}z|^{1/2} = \sqrt{x^2 + y^2}, \ \bar{z} = x - iy, \ z_1 + z_2, z_1 z_2, z_1/z_2 \text{ if } z_2 \neq 0.$$

 \bullet \mathbb{F}^n is the set of column vectors of length n with entries in \mathbb{F} .

• If
$$\mathbb{F}$$
 is clear, we use the notation $M_n, M_{m,n}$.

• Let $A \in M_{m,n}$. Then $A^T \in M_{n,m}$. For complex matrix A, we have \bar{A} and $A^* = (\bar{A})^T = \overline{A^T}$.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 3+1 \end{bmatrix} \in M_2(\mathbb{C})$$

$$Con = \frac{3}{5}$$
, $S:0 = \frac{4}{5}$
 $5 = \sqrt{3^2 + 4^2}$

$$|z| = |\overline{z}|^{1/2} = |x^2 + y^2|$$

Example:
$$A = \begin{bmatrix} 1 & 25 \\ 3 & 46 \end{bmatrix} = A^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 5 & 6 \end{bmatrix}$$

$$Example: A = \begin{bmatrix} 1+i & 2 & i \\ 3 & 4 & 0 \end{bmatrix}, A = \begin{bmatrix} 1-i & 2-i \\ 3 & 4 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1-i & 3 \\ 2-i & 0 \end{bmatrix}$$

$$2 \times 1 + 3 \times 2 = b_1$$

 $2 \times 1 + 4 \times 2 = b_2$
 $3 \times 1 + 7 \times 2 = b_3$

I.1 A close look at Ax = b

Linear equations, elementary row operations, solution sets.

 $\frac{1}{12} \begin{bmatrix} 23 \\ 24 \\ 121 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$

Recall. Let $A \in M_{m,n}(\mathbb{F}), b \in \mathbb{F}^n$, Ax = 0.

Find $E_r \cdots E_1[A|b] = [\tilde{A}|\tilde{b}]$ in row echelon form, $E_r \cdots E_1[A|I_n] = [I_n|A^{-1}]$.

Matrices, column space, row space, null space, ranks.

Ankla

Anv-zero rowelf.

The row echelon form $DA = \dim C(A^T)$ and $E_r \cdots E_1A = [\tilde{A}]$ in echelon form.

The row echelon form $DA = \dim C(A^T)$

Then we can find the bases for column space, row space, and null space, and the rank of A.

A ENMIN, rull space N(A) = { XEH : AX = 0 }

Interpretation of Ax = b.

Example Let $A = [A_1 A_2] \in M_{3,2}, x = (x_1, x_2)^T, b \in \mathbb{F}^3$.

Then Ax = b means $b = x_1A_1 + x_2A_2$.

All combination of A_1, A_2 form the column space.

The equation Ax = b is solvable means that b is in the column space.

In general, if $A \in M_{3,n}$, the column space can be of dimensions 0, 1, 2, 3.

All these comments hold for the general case: Ax = b.

For example, if $A = [A_1 | \cdots | A_n] \in M_{m,n}(\mathbb{F})$ and $Ax = b \in \mathbb{F}^m$ then $b = x_1 A_1 + \cdots + x_n A_n$.

If $Ax = 0 \in \mathbb{F}^m$ has non-trivial solution then $\{A_1, \ldots, A_n\}$ is linearly independent, i.e., there is x_1, \ldots, x_n not all zero such that $x_1 A_1 + \cdots + A_n = 0$.

The null space of $A \in M_{m,n}$ is the set/subspace $\{x \in \mathbb{F}^n : Ax = 0\}$.

Theorem rank + null space dimension =
$$n$$
.

A $\in M$ m , n pivoling one $= n$.

A= 27 24 177

Proposition If $A \in \widetilde{M}_{m,n}$ has rank r, then A = CR, where $C \in M_{m,r}$ with independent columns forming a basis for the column space, and $R \in M_{r,n}$ has independent rows forming a basis for the \leftarrow row space. So, the row rank and column rank of A are the same.

Remark The result is useful for low rank factorization.

There will be better factorization, namely, the singular value decomposition.