1.7 Symmetric matrices, Hermitian matrices, positive definite matrices

Theorem (a) Every real symmetric matrix A can be written as QDQ^T for a real diagonal matrix $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$ and an orthogonal matrix Q.

(b) Every complex Hermitian matrix A can be written as UDU^* for a real diagonal matrix $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ and a unitary matrix U.

Proof. If $A \in M_2(\mathbb{R})$ be symmetric, let $v \in = [v_1, v_2]^T \in \mathbb{R}^2$ be such that $v^T v = 1$ and

$$v^T A v = \lambda_1 = \max\{x^T A x : x \in \mathbb{R}^2, x^T x = 1\}.$$

Then $Q = \begin{pmatrix} v_1 & v_2 \\ v_2 & -v_1 \end{pmatrix}$ is orthogonal, and we claim that $Q^TAQ = \operatorname{diag}(\lambda_1, \lambda_2)$. If not, assume $Q^TAQ = \begin{pmatrix} \lambda_1 & b \\ b & c \end{pmatrix}$. Then

$$f(\theta) = [\cos \theta, \sin \theta] Q^T A Q[\cos \theta, \sin \theta]^T = \cos^2 \theta \lambda_1 + \cos \theta \sin \theta b + \sin^2 \theta c,$$

and $f'(0) = 2b \neq 0$. So, we can find θ near 0 such that $u^T A u > \lambda_1$ with $u = Q[\cos \theta, \sin \theta]^T$, which is a contradiction.

Now, for $A \in M_n(\mathbb{R})$. Let $v \in \mathbb{R}^n$ be a unit vector such that

$$v^T A v = \lambda_1 = \max\{x^T A x : x \in \mathbb{R}^n, x^T x = 1\}.$$

Suppose Q is an orthogonal matrix such that $Q^TAQ=A_1$. Then $A_1=[\lambda_1]\oplus A_2$

For a Hermitian matrix $A \in M_n(\mathbb{C})$, if $v \in \mathbb{C}^n$ and $\mu = v^*AV$, then $\bar{\mu} = (v^*Av)^* = v^*A^*v = v^*Av = \mu$. So, μ is real and we can consider a unit vector $v \in \mathbb{C}^n$ such that

$$v^*Av = \lambda_1 = \max\{u^*Au : u \in \mathbb{C}^n, u^*u = 1\}.$$

In practice, we can do the proof and diagonalization as follows. First, we can treat a real symmetric matrix as a complex Hermitian matrix A. Then there is a possible complex eigenvalue λ and a unit eigenvector x. We have $Ax = \lambda x$ and thus $x^*Ax = x^*\lambda x = \lambda$. Now, $\ddot{\lambda} = *x^*Ax)^* = x^*A^*xx^*Ax = \lambda$. So, λ is real.

Then we compute an eigenvalue λ and an unit eigenvector x, which is real in the real case, so that $Ax = \lambda x$, and let U_1 be a unitary matrix (an orthogonal matrix in the real case) with x as the first column. Then $U_1^*AU_1$ has the first column equal to $[\lambda, 0, \dots, 0]^T$. But $U_1^*AU_1$ is also Hermitian (real symmetric). So $U_1^*AU_1 = [\lambda] \oplus A_1$ where A_1 is also Hermitian (real symmetric). By induction, $U_2^TA_1U_2 = D_2$, a real diagonal matrix. Thus, $U = U_1([1] \oplus U_2)$ is unitary and $U^*AU = D$.

$$u_{1}^{x}Au_{1} = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & A_{1} \end{bmatrix}$$

$$\begin{bmatrix} x & \cdots & 14 \end{bmatrix}$$

$$Fx = \lambda x$$

Applications

1. Maximum and minimum of real valued function $f(x) = f(x_1, \dots, x_n)$.

Then
$$f(x_1 + t_1, \dots, x_n + t_n)$$

$$= f(x_1, \dots, x_n) + \underbrace{(f_{x_1}(x), \dots, f_{x_n}(x))(t_1, \dots, t_n)^T}_{\mathcal{P}} + (\mathbf{f}_1, \dots, \mathbf{f}_n) \underbrace{J_f(x_n)(\mathbf{f}_1, \dots, \mathbf{f}_n)^T}_{\mathcal{P}} + O(t^3),$$
where

$$J_f(x) = (f_{x_i,x_j}(x)) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right).$$

Thus, f(x) is minimum if $f_{x_j}(x) = 0$ for all j = 1, ..., n, and $J_f(x)$ is positive semi-definite.

2. Major and minor axes of elliptical disk/ellipsoid.

Suppose the ellipse equation $1 = 5x^2 + 8xy + 5y^2$ is written as $1 = (x,y)A(x,y)^T$ with A =Then A is positive definite, and $A = QDQ^T$ with D = diag(9,1) and $Q = \frac{1}{2}\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$.

Then the ellipse equation becomes $1 = 9X^2 + Y^2$ with $X = (x+y)\sqrt{2}$ and $Y = (-x+y)/\sqrt{2}$. Geometrically, we apply a rotation of $-\pi/4$, we get a vertical ellipse.

In general, If
$$f(x_1t_1x_2^{t_1}) = f(x_1, x_2) + (f(x_1x_2) f(x_1x_2)) + (f(x_1x_2) f(x_2)) + (f(x_1x_2) f(x_2) f(x_2) f(x_2) f(x_2) + (f(x_1x_2) f(x_2) f(x_2) f(x_2) + (f(x_1x_2) f(x_2) f(x_2) + (f(x_1x_2) f(x_2) f(x_2) + (f(x_1x_2) f(x_2) f(x_2) + (f(x_1x_2) f(x_2) f(x_2) f(x_2) + (f(x_1x_2) f(x_2) f(x_2) + (f(x_1x_2)$$

(filking, filming) = (uning) = 0 Close (ti,tr) sit. (titz) = 8 (u,u2), 8 <0

$$\mathcal{H} = \left(\frac{\lambda_{10}}{\lambda_{10}} \right) = (0,0)$$

$$(f_{1}(x_{1}, x_{2}), f_{1}(x_{1}, y_{2})) = (0,0)$$

$$(f_{1}(x_{1}, x_{2}), f_{2}(x_{1}, y_{2}))$$

De p. 50 - 51. to see actual example.

In Matleb. Q=QT.A=AT

 $[u,DJ=eig(A) -> [u_1|u_2]$

-> D= [d, 0]

St. - A= UDUT

produce $U\Sigma V^*$ is called the singular decomposition of A.

Note that AA^* and A^*A have eigenvalues $s_1^2 \ge \cdots \ge s_k^*$ and zoeros.

Note that AA^* and A^*A have eigenvalues $s_1^2 \ge \cdots \ge s_k^*$ and zoeros. $A^*A = \bigvee_{D \le K} S_D \bigcup_{U = K} \bigcup_{U \le K} V^* = \bigvee_{U = K} S_D \bigcup_{U \le K} V^* = \bigvee_{U \in K} \bigcup_{U \le K} V^* = \bigvee_{U \in K} \bigcup_{U \in K} \bigcup_{U \in K} V^* = \bigvee_{U \in K} \bigcup_{U \in K} \bigcup$

Also, the Wielandt matrix $S = \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix}$ has eigenvalues $s_1, \ldots, s_k, -s_k, \ldots, s_1$ and zeros.

Theorem Let $A \in M_n$. Then A = UP = QV for some unitary U, V and positive semidefinite P, Q with eigenvalues $s_1 \ge \cdots \ge s_n$.

18

Example gig: =5: 20 1 2: 4: then

$$A \left[y_1 - y_k \right] = \left[u_1 - u_k \right] \left[\begin{array}{c} y_1 \\ 0 \\ y_k \end{array} \right]$$

$$So \quad A = \left[u_1 - u_k \right] \left[\begin{array}{c} y_1 \\ 0 \\ y_2 \end{array} \right] \left[\begin{array}{c} y_2 \\ y_3 \end{array} \right]$$

Si . Sic2

