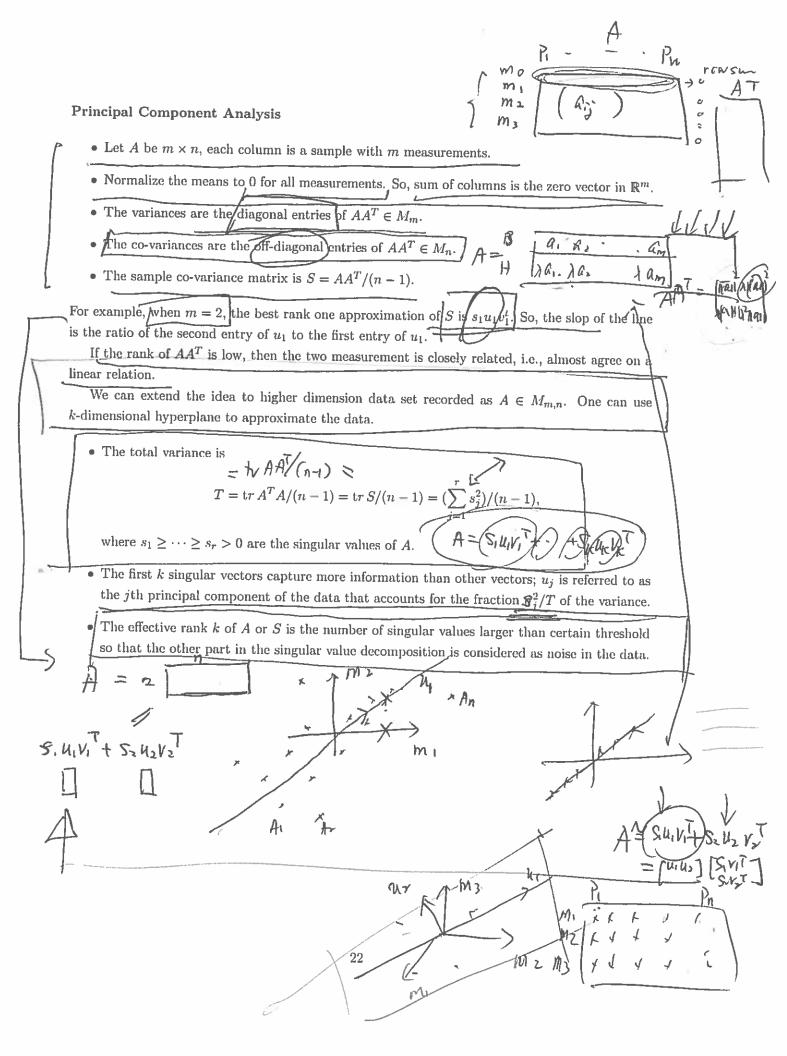
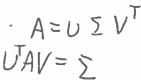
Singular value decomposition of AEMm,n.

eigenvector

Best rank & approximation of Air
Sillivi*+. -+ Selle Vict





[442] 1/2

• Note that the line is different from finding the best fit y = ax + b. In that case, we want to find best a, b such that $ax_i + b = y_i$ for i = 1, ..., n without centering the data. We consider $\bar{A}(a,b)^T = (y_1, ..., y_n)^T$ and find the least square solution:

$$\tilde{A}^T \tilde{A}(a,b)^T = \tilde{A}^T (y_1,\ldots,y_n)^T.$$

This is known as standard least square.

• In our case, we consider the centered data, and

$$||A^T||_F^2 = ||A^T u_1||_F^2 + \dots + ||A^T u_m||_F^2$$

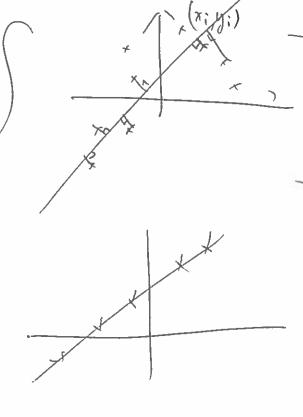
so that

the sum of squared distances from the data points to u_1,\ldots,u_k is a minimum

There are interesting discussion of the Hilbert matrix

$$H = [a_{ij}] = [1/(i + j - 1)]$$

and the zero-one matrix representing the picture of square, triangle, circe, etc. See pp. 78-79.



$$\begin{bmatrix} x_{4} & 1 \\ \vdots & 1 \\ x_{n} & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} b \\ \vdots \\ y_{n} \end{bmatrix}$$

$$\widehat{A}^{T}\widehat{A}\left[\widehat{b}\right] = \widehat{A}^{T}\left[\widehat{y}\right]$$

$$= \begin{pmatrix} x_1 & x_1 \\ y_1 & y_1 \end{pmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$H_{1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

$$H_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2$$

If
$$A = A^{*}$$
 with eigenvalues $\lambda_1 \geq \lambda_2 \geq -2 \lambda_k \geq 0$
 $\lambda_n \leq \lambda_{n-p+1} \leq \lambda_{n-p+1}$

and
$$A = \lambda_1 \mu_1 \mu_1^* + \cdots + \lambda_n \mu_n^* + \lambda$$