Math 323 Operations Research HW7

7.5-1:

	22	18	30	18	M		4	0	8	0	10
	18	-	27	22	M		0	-	5	4	10
ľ	26	20	28	28	M	\rightarrow	6	0	4	8	0
	16	22	-	14	M		2	8	-	0	14
ĺ	21	-	25	28	M		0	-	0	7	7

Thus: Person 1 is assigned Job 2; Person 2 is assigned Job 1; Person 3 has no job; Person 4 is assigned Job 4; and Person 5 is assigned Job 3. The minimum cost is 18+18+14+25=75.

Sample Solution

7.5-6(a):

-8	-6	-4	-7	-5		0	1	3	0	3
-5	-7	-6	-4	-9		4	1	2	4	0
-10	-6	-5	-2	-10	\rightarrow	0	3	4	7	0
-1	0	0	0	0		0	0	0	0	1
-5	-7	-9	-8	-6		5	2	0	1	4

Thus, Billie is going to spend all his time with Bene; John is going to spend all his time with Nell; Fish is going to spend all his time with Ally; Glen is going to spend all his time with Goorgia; Larry is going to spend all his time with Jane. The maximum happiness is 7+9+10+0+9=35.

7.5-6(b):

Using transportation problem set up, with the NW rule for the first basic feasible solution:

	Ally	Georgia	Jane	Rene	Nell	Supply
	8	6	4	7	5	
Billie	1	0				1
	5	7	6	4	9	
John		1	0			1
	10	6	5	2	10	
Fish			1	0		_ 1
	1	0	0	0	0	
Glen				1	0	1
	5	7	9	8 _	6	
Larry					1	1
Demand	1	1	1	1	1	

We can see that all the solutions are 1 and 0, since each person can supply 1 and demand 1. Through the iteration process, to maximize the overall happiness, we want to use the people with higher happiness index as much as possible, in this case, Δ can at most be 1. Thus, in the iteration, each Δ will be 1, causing the substituted variable to decrease to 0. Therefore, the final optimal solution will contain all 1 and 0, meaning each person ends up spending their entire time with one partner.

7.6-1(a):

	LA	Detroit	Atlanta	Houston	Tampa	Dummy	Supply
	0	140	100	90	225	0	
LA						-	5100
	145	0	111	110	119	0	
Detroit							6900
	105	115	0	113	78	0	
Atlanta							4000
	89	109	121	0	M	0	
Houston							4000
	210	117	82	M	0	0	
Tampa						_	4000
Demand	4000	4000	4000	6400	5500	100	

7.6-1(b):

7.6-1(b):	LA	Detroit	Atlanta	Houston	Tampa	Dummy	Supply
	LA	Derroit	Atlanta	Houston	Tampa	Dullilly	Supply
	0	M	100	90	225	0	
LA							5100
	M	0	111	110	119	0	
Detroit							6900
	105	115	0	113	78	0	
Atlanta							4000
	89	109	121	0	M	0_	
Houston						15	4000
	210	117	82	М	0	0	
Tampa	_						4000
Demand	4000	4000	4000	6400	5500	100	

7.6-1(c):

	LA	Detroit	Atlanta	Houston	Tampa	Dummy	Supply
	0	140	100	90	225	0	
LA							5100
	145	0	111	110	119	0	
Detroit						_	6900
	105	115	0	113	78	0	
Atlanta							4000
	89	109	121	0	5	0	
Houston							4000
	210	117	82	5	0	0	
Tampa						. /	4000
Demand	4000	4000	4000	6400	5500	100	

7-10:

	4		2		4	
10		5				15
	12		8		4	
		5		10		1/5
10)	10		10)	C≠130

7-11:

4		2		4	
10	6				16
12		8		4	
	4		11		15
10	10)	11		C=128

Increasing s_1 and d_3 is the same as changing b for the LP simplex method. Thus, the basic variables remain the same and the only change is the value of the basic variable. Increasing 1 unit of s_1 while d_2 remains the same means that we are able to increase x_{12} by 1, and correspondingly decrease y_{22} by 1. Looking at the cost coefficient, substituting y_{22} by x_{12} for 1 unit will save 6 dollars. Increasing d_3 will cause x_{23} to increase by 1, which cost 4 dollars more. Summing up the two change, 6-4=2, and thus we will save 2 dollars for the overall cost by supplying and demanding 1 more unit.

7-18:

	Qd1	Qd2	Qd3	Dummy	Supply
	200	300	400	0	
Qs1					240
	240	180	280	0	
Qs2					240
	360	300	240	0	1
Qs3					240
Demand	200	300	100	120	

After iterating, the optimal solution is:

	Qd1	Qd2	Qd3	Dummy	Supply
	200	300	400	0	
Qs1	200	0			240
	240	180	280	0	
Qs2		240			240
	360	300	240	0	
Qs3		60	100	80	240
Demand	200	300	100	120	C=125200

7-19:					
	J1	J2	J3	J4	Supply
	0	1_	0	1	
P1					20
	1	0	0	1	
P2					30
	1	1	0	0	
Р3					40
	0	1	1	0	
P4	 		_		20
	1	1	1	1	
Dummy					10
Demand	30	30	40	20	

After iterating, the optimal solution is:

	J1	J2	J3	J4	Supply
	0	1	0	1	
P1	20				20
	1	0	0	1	
P2		30			30
	1	1	0	0	
P3			40		40
	0	1	1	0	
P4				20	20
	11	1	1	1	
Dummy	10				10
Demand	30	30	40	20	

The maximum number of people assigned jobs is 110 people.