Sample Solution

Math 323 Operations Research HW11

```
9.2-1:
Max Z=3x_1+2x_2+2x_3+x_4+3x_5+3x_6+x_7, subject to:
x_1 + x_3 + x_5 + x_7 \ge 4
x_3 + x_4 + x_5 + x_6 + x_7 \ge 2
x_2+x_4+x_6\geq 1
x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = 5
3x_1 + 2x_2 + 2x_3 + x_4 + 3x_5 + 3x_6 + 3x_7 \ge 10
3x_1 + x_2 + 3x_3 + 3x_4 + 3x_5 + x_6 + 2x_7 \ge 10
x_1 + 3x_2 + 2x_3 + 3x_4 + 3x_5 + 2x_6 + 2x_7 \ge 10
x_6 + x_3 \le 1
-x_4 - x_5 + 2 \le 2y
x_1 \leq 2 - 2y
x_2 + x_3 \ge 1
x_1, x_2, ..., x_7, y are all 0 or 1 variables.
If x_i = 1, the player is a starter. Otherwise, he is not.
```

9.2-2:

```
Let y_1, y_2, y_3 represent site 1, 2, 3 respectively.
Min Z=100000y_1 + 20x_1 + 60000y_2 + 30x_2 + 40000y_3 + 40x_3, subject to:
0.4x_1 + 0.25x_2 + 0.2x_3 \ge 80000
                                                                                      X1 < 200000 y1
X2 < 320000 y2
0.3x_1 + 0.2x_2 + 0.25x_3 \ge 50000
x_1 \leq M_1 y_1
x_2 \leq M_0 y_2
x_3 \leq M y_3
                                                                                         X3 5400000 43
y_1, y_2, y_3 are all 0 or 1 variables. x_1, x_2, x_3 \ge 0.
```

If $y_i = 1$, the site is used to build stations. Otherwise, it is not. x_i represent the ton of water being treated under each site 1, 2, 3.

9.2-3:

Let y_1 , y_2 represent whether to produce product 1 and 2. Let x_1, x_2 represent the amount of product 1 and product 2 produced. Max $Z=2x_1 + 5x_2 - 10y_1 - 20y_2$, subject to: $3x_1 + 6x_2 \le 120$, $x_1 \leq 40y_1$ $x_2 \leq 20y_2$. y_1 , y_2 are 0 or 1 variables. x_1 , $x_2 \ge 0$. If $y_j = 1$, then product i is produced. Otherwise, it is not.

9.2-4:

When $x_2 + x_3 = 2$, we want $x_4 = 1$. We add constraint: $x_2 + x_3 - 1 \le x_4$, with $x_2, x_3, x_4 = 0, 1$.

9.3-1:

Solving the IP relaxation problem as subproblem 1, we get: $x_1 = 3.5, x_2 = 1.5, Z = 20.5.$ Now we divide the problem up based on x_1 : Subproblem 2: subproblem $1+x_1 \leq 3$; Subproblem 3: subproblem $1+x_1 \ge 4$; Solving subproblem 2, we get $x_1 = 3$, $x_2 = 2$, Z = 19, And solving subproblem 3, we get $x_1 = 4$, $x_2 = 0$, Z = 20.

Since 20 > 19 and both results yield integer solutions, we have the optimal solution as $x_1 = 4$, $x_2 = 0$, Z = 20.

```
9.3-3:
Solving the IP relaxation problem as subproblem 1, we get:
x_1 = 5, x_2 = 2.5, Z = 17.5.
Now we divide the problem up based on x_2:
Subproblem 2: subproblem 1+x_2 \le 2;
Subproblem 3: subproblem 1+x_2 \ge 3;
Solving subproblem 2, we get x_1 = 17/3, x_2 = 2, Z = 52/3,
And solving subproblem 3, we get x_1 = 4, x_2 = 3, Z = 17.
We further divide subproblem 2 based on x_1:
Subproblem 4: subproblem 2+x_1 \le 5;
Subproblem 5: subproblem 2+x_1 \ge 6;
Solving subproblem 4, we get x_1 = 5, x_2 = 2, Z = 16,
And solving subproblem 5, we get x_1 = 6, x_2 = 7/4, Z = 69/4.
We further divide subproblem 5 based on x_2:
Subproblem 6: subproblem 5+x_2 \le 1;
Subproblem 7: subproblem 5+x_2 \ge 2;
Solving subproblem 6, we get x_1 = 7, x_2 = 1, Z = 17,
And solving subproblem 7, we get x_1 = 17/3, x_2 = 2, Z = 52/3.
We further divide subproblem 7 based on x_1:
Subproblem 8: subproblem 7+x_1 \le 5;
Subproblem 9: subproblem 7+x_1 \ge 6;
Solving subproblem 8, we get x_1 = 5, x_2 = 2, Z = 16,
And solving subproblem 9, we get an infeasible outcome.
Thus, we have finished all possibilities. Since 17 > 16, we have the optimal solution as x_1 = 4, x_2 = 3, or
x_1 = 7, x_2 = 1, Z = 17.
```