Math 323 Operations Research Notes on Chapter 2. C.K. Li

Solving linear systems

• We use matrix notation to record a linear system Ax = b, where

 $A = [a_{ij}]$ is $m \times n$, $x = [x_1, \dots, x_n]^T$ is $n \times 1$ with variables x_1, \dots, x_n , and $b = [b_1, \dots, b_m]^T$.

- We use Guassian-Jordan reduction on the augmented matrix [A|b] to determine all the solutions.
- In particular, apply elementary row operations and reduce it to the row echelon form.

• Three possibilities: (a) no solution, (b) one solution, (c) infinitely many solution.

In terms of the (reduced) row echelon form:

- (a) happens if there is a row of the form $[0, \ldots, 0, r]$ with $r \neq 0$ in the row echelon form;
- (b) happens if (a) does not hold and there are n basic variables (corresponding to leading ones);
- (c) happens if (a) does not hold and there are non-basic variables.

Inverse

- If A is $n \times n$, and there is B such that $AB = I_n$ or $BA = I_n$, then A is invertible, and B is called the **inverse** of A, denoted by A^{-1} .
- If Ax = b, where A is $n \times n$ invertible, then $x = A^{-1}b$ is the unique solution of the system.
- One can use the elementary row operations to change $[A|I_n]$ to $[I_n|A^{-1}]$.

Rank, linearly independence

- The **rank** of a matrix A is the number of leading ones in its row echelon form.
- Let A be a matrix. Then A and A^T have the same rank.
- The vectors $\{v_1, \ldots, v_r\}$ in \mathbb{R}^n is **linearly independent** if $A = [v_1|\cdots|v_r]$ has rank r so that the linear system Ax = 0 has only the trivial solution $[x_1, \ldots, x_r]^T = [0, \ldots, 0]^T$.

• The **determinant** of an $n \times n$ matrix $A = [a_{ij}]$ is defined by

$$\det(A) = a_{11} \det(A_{11}) - a_{12} \det(A_{12}) + a_{13} \det(A_{13}) - \dots + (-1)^{n+1} \det(A_{1n}).$$

• An $n \times n$ matrix is invertible if and only if its determinant is nonzero, equivalently, the columns (rows) of A form a linearly independent set.