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The Simplex Algorithms

§4.1 - 4.6 The basic procedures and the theory behind

Standard form

To apply simplex method, we will first change the problem to a standard form:

maxZ = c1x1 + · · ·+ cmxn

Subject to

ai1x1 + · · ·+ ainxn = bi, i = 1, . . . ,m.

x1, . . . , xn ≥ 0.

• For

minZ = c1x1 + · · ·+ cnxn

we can change it to

max(−Z) = −(c1x1 + · · ·+ cnxn).

• For the inequalities

ci1x1 + · · ·+ cinxn ≤ bi, i = 1, . . . , p,

we can add slack variables s1, . . . , sp ≥ 0 to get

ci1x1 + · · ·+ cinxn + si = bi, i = 1, . . . , p.

• For the inequalities

ci1x1 + · · ·+ cinxn ≥ bi, i = p+ 1, . . . ,m,

we can subtract excess variables ep+1, . . . , em ≥ 0 to get

ci1x1 + · · ·+ cinxn − ei = bi, i = p+ 1, . . . ,m.

Simplex algorithm when m ≤ n

Step 1. Start with a basic feasible solution (if it exists).

Step 2. Improve the basic feasible solution by finding another basic solution (if possible) by

changing one of the basic variable to go to an adjacent basic solution.

Step 3. Repeat Step 2 until we cannot improve our solution.



Example maxZ = 5x1 + 2x2 + 3x3 − x4 + x5

Subject to:

x1 + 2x2 + 2x3 + x4 = 8

3x1 + 4x2 + x3 + +x5 = 7

x1, . . . , x5 ≥ 0.

Step 1. Let (x4, x5) = (8, 7), x1 = x2 = x3 = 0.

Step 2. Let us bring in the nonbasic variable x1, and consider

x1 + x4 = 8, 3x1 + x5 = 7.

Increase x1 = 1 to get the solution (x1, x4, x5) = (1, 7, 4) and x2 = x3 = 0.

The change in Z value:

[5(1) + 2(0) + 3(0)− 1(7) + 1(4)]− [5(0) + 2(0) + 3(0)− 1(8) + 1(7)] = 2− (−1) = 3,

which is an improvement known as the relative profit of the nonbasic variable x1.

The maximum change limited by the change of x4, x5:

x1 + x4 = 8 implies x1 ≤ 8; 3x1 + x5 = 7 implies x1 ≤ 7/3.

So, we may consider the new basic solution (x1, x4) = (7/3, 17/3) and x2 = x3 = x5 = 0.

The value Z will increase by (7/3) ∗ 3 = 7.

Now repeat Step 2 if we can improve.

Step 3. If we cannot improve for any adjacent basic feasible solution, then we get an optimal

solution. (Proof?)



Simplex methods in Tableau form

CB B (+5)x1 (+2)x2 (+3)x3 (−1)x4 (+1)x5 constraints

−1 x4 1 2 2 1 0 8
1 x5 3 4 1 0 1 7

Z = (−1, 1)

(
8
7

)
= −1.

Check the relative profits for different nonbasic variables:

C̃1 = 5− (−1, 1)

(
1
3

)
= 3, C̃2 = 2− (−1, 1)

(
2
4

)
= 0, C̃3 = 3− (−1, 1)

(
2
1

)
= 4.

We can include the information in the tableau.

CB B (+5)x1 (+2)x2 (+3)x3 (−1)x4 (+1)x5 constraints

−1 x4 1 2 2 1 0 8
1 x5 3 4 1 0 1 7

C̃ 3 0 4 0 0 Z = −1

Because C̃3 is largest, we bring in the nonbasic variable x3.

The limit for x3 increase is determined by the quotients of the entries in

(
x4
x5

)
=

(
8
7

)
divided by

those of the vector under x3 yielding

(
8/2
7/1

)
. So, we can increase x3 by 4, and change x4 to 0.

We can now update the tableau to by Gaussian elimination:

CB B (+5)x1 (+2)x2 (+3)x3 (−1)x4 (+1)x5 constraints

3 x3 1/2 1 1 1/2 0 4
1 x5 5/2 3 0 -1/2 1 3

C̃ 1 -4 0 -2 0 Z = 15

So, we can use x1 as a basic variable. The increase of x1 is limited by

8 for x3, 6/5 for x5.

We can increase x1 = 6/5 and decrease x5 = 0.

Update the tableau to by Gaussian elimination:

CB B (+5)x1 (+2)x2 (+3)x3 (−1)x4 (+1)x5 constraints

3 x3 0 2/5 1 3/5 -1/5 17/5
5 x1 1 6/5 0 -1/5 2/5 6/5

C̃ 0 -26/5 0 -9/5 -2/5 Z = 81/5

As C̃ are all non-positive, we have an optimal solution.



Summary of Computational Steps

Step 1 Set up the problem in the standard form

maxZ = c · x = (c1, . . . , cn) · (x1, . . . , xn) = c1x1 + · · ·+ cnxn

Subject to Ax = b for an m× n matrix A = (aij) and b ∈ Rm.

x1, . . . , xn ≥ 0.

Step 2 Find a feasible solution using m basic variables, corresponding to the columns of A forming

the invertible matrix B. In fact, if we know B, the center part of the updated tableau (without

the first and last row, the first and last column) has the form

B−1[A|b].

Step 3 Compute C̃ vector. Again, it will be of the form C̃ = c− (cB)B−1A.

Step 4 If c̃ is non-positive, then we have the optimal solution.

Otherwise, go to Step 5.

Step 5 Let c̃i be the maximum value in c̃ corresponding to the ith nonbasic variable, and let Ai be

the ith column of A.

Let B−1b = b̃ = (b̃1, . . . , b̃m)T and B−1Ai = (ã1, . . . , ãn)T . Then the reduced system with the

potential new basic variable has augmented matrix

[ã|Im|b̃]

In case all ãi ≤ 0, then we can increase xi as much as possible, and we will get an unbounded

solution.

If ãj > 0 for some j = 1, . . . ,m, let b̃j/ãj be the minimum and replace the the basic variable

xj by the nonbasic variable xi.

Return to Step 2.



Example (of unbounded solution) If in a maximization problem involving x1, . . . , x5 ≥ 0

satisfying 2 equations.

Suppose (x1, x2, x3, x4, x5) = (0, 0, 0, 8, 7) is a basic feasible solution. If C̃1 = 1 > 0 and the

reduced system is

−x1 + x4 = 8, −3x1 + x5 = 7.

Then we can increase x1 indefinitely, and conclude that we have an unbounded solution.

Example of unbounded solution arising in the iteration process

CB B (2)x1 (+3)x2 (+0)x3 (+0)x4 constraints

0 x3 1 -1 1 0 2
0 x4 -3 1 0 1 4

C̃ 2 3 0 0 Z = 0

CB B (2)x1 (+3)x2 (+0)x3 (+0)x4 constraints

0 x3 -2 0 1 1 6
3 x2 -3 1 0 1 4

C̃ 11 0 0 -3 Z = 12

Special cases one may encounter

Alternate Optima

Suppose the iteration leads to:

CB B (+3)x1 (+2)x2 (+0)x3 (+0)x4 (+0)x5 constraints

0 x3 0 0 1 -1/5 8/5 6
2 x2 0 1 0 1/5 -3/5 1
3 x1 1 0 0 1/5 2/5 4

C̃ 0 0 0 -1 0 Z = 14

The non-basic variable x5 has zero relative profit. We can use it to replace x3 and get

CB B (+3)x1 (+2)x2 (+0)x3 (+0)x4 (+0)x5 constraints

0 x5 0 0 5/8 -1/8 1 15/4
2 x2 0 1 3/8 1/8 0 13/4
3 x1 1 0 -1/4 1/4 0 5/2

C̃ 0 0 0 -1 0 Z = 14

Unique optimum

If all the non-basic variables has negative relative profit, then the problem has a unique solution.



Ties in the selection of non-basic variable

Suppose c̃i is maximum and in the selection of basic variable xj to be replaced, there are ties

in the minimum ratio b̃j/ãj , then we can choose any one of the xj to be replaced.

Other degeneracy occurs when a basic variable xi = 0. Then a change of basic variable may

lead to no improvement even if we apply the simplex algorithm.

Example

CB B (0)x1 (+0)x2 (+0)x3 (+2)x4 (+0)x5 (+3/2)x6 constraints

0 x1 1 0 0 1* -1 0 2
0 x2 0 1 0 2 0 1 4
0 x3 0 0 1 1 1 1 3

C̃ 0 0 0 2 0 3/2 Z = 0

CB B (0)x1 (+0)x2 (+0)x3 (+2)x4 (+0)x5 (+3/2)x6 constraints

2 x4 1 0 0 1 -1 0 2
0 x2 -2 1 0 0 2* 1 0
0 x3 -1 0 1 0 2 1 1

C̃ -2 0 0 0 2 3/2 Z = 4

CB B (0)x1 (+0)x2 (+0)x3 (+2)x4 (+0)x5 (+3/2)x6 constraints

2 x4 0 1/2 0 1 0 1/2 2
0 x5 -1 1/2 0 0 1 1/2 0
0 x3 1 -1 1 0 0 0 1

C̃ 0 -1 0 0 2 1/2 Z = 4

• Two more iterations yield (x1, x4, x6) = (1, 1, 2) as the optimal solution with Z = 5.

• In really bad situation, we might even have cycling issue.

• In practice, we are safe if basic feasible solutions always have positive entries (non-degenerate

problems).

• As long as there is a positive c̃i, we should try to improve the solution though it might increase

the number of steps in the calculation, but it will not affect the optimal value Z.



§4.12 Finding an initial solution - Big M method, and detecting infeasible problem

Suppose we solve an LP problem

maxZ = c1x1 + · · ·+ cnxn

subject to

Ax = b, x1, . . . , xn ≥ 0,

where A is m× n with m ≤ n.

If we have no obvious initial basic feasible solution, we can introduce artificial variable a1, . . . , ar ≥
0 and study the problem

maxZ = c1x1 + · · ·+ cnxn −M(a1 + · · ·+ ar)

subject to

ai1x1 + · · ·+ ainxn + ai = bi, i ∈ R,

ai1x1 + · · ·+ ainxn = bj , i /∈ R,

x1, . . . , xn, a1, . . . , ar ≥ 0

for a very large M > 0, and a suitable subset of R ⊆ {1, . . . ,m}.

Example maxZ = 2x1 + 3x3 subject to

x1 + x2 ≤ 8, x1 + 3x2 ≥ 20, x1, x2 ≥ 0.

Then ...

If we cannot get rid to the artificial variable a1, . . . , an at the end of the process, we have an

infeasible problem!



An example of using big M method for a minimization problems

Consider minZ = −3x1 + x2 + x3 +Mx6 +Mx7

subject to

x1 − 2x2 + x3 ≤ 11, −4x1 + x2 + 2x3 ≥ 3, 2x1 − x3 = −1, x1, x2, x3 ≥ 0.

Adding slack variable x4 ≥ 0, excess variable x5 ≥ 0 and artificial variables x6, x7 ≥ 0, we get an

initial basic feasible solution.

CB B (−3)x1 (+1)x2 (+1)x3 (+0)x4 (+0)x5 (+M)x6 (+M)x7 constraints

0 x4 1 -2 1 1 0 0 0 11
M x6 -4 1 2 0 -1 1 0 3
M x7 -2 0 1* 0 0 0 1 1

C̃ -3+6M 1-M 1-3M 0 M 0 0 Z = 4M

CB B (−3)x1 (+1)x2 (+1)x3 (+0)x4 (+0)x5 (+M)x6 (+M)x7 constraints

0 x4 3 -2 0 1 0 0 -1 10
M x6 0 1* 0 0 -1 1 -2 1
1 x3 -2 0 1 0 0 0 1 1

C̃ -1 1-M 0 0 M 0 3M-1 Z = M + 1

CB B (−3)x1 (+1)x2 (+1)x3 (+0)x4 (+0)x5 (+M)x6 (+M)x7 constraints

0 x4 3* 0 0 1 -2 2 -5 12
1 x2 0 1 0 0 -1 1 -2 1
1 x3 -2 0 1 0 0 0 1 1

C̃ -1 0 0 0 1 M-1 M+1 Z = 2

CB B (−3)x1 (+1)x2 (+1)x3 (+0)x4 (+0)x5 (+M)x6 (+M)x7 constraints

-3 x1 1 0 0 1/3 -2/3 2/3 -5/3 4
1 x2 0 1 0 0 -1 1 -2 1
1 x3 0 0 1 2/3 -4/3 4/3 -7/3 9

C̃ 0 0 0 1/3 1/3 M-1/3 M-2/3 Z = −2



§4.13 The two-phase method

Phase one

CB B (0)x1 (0)x2 (0)x3 (+0)x4 (+0)x5 (+1)x6 (+1)x7 constraints

0 x4 1 -2 1 1 0 0 0 11
1 x6 -4 1 2 0 -1 1 0 3
1 x7 -2 0 1* 0 0 0 1 1

C̃ 6 -1 -3 0 1 0 0 Z = 4

CB B (0)x1 (+0)x2 (+0)x3 (+0)x4 (+0)x5 (+1)x6 (+1)x7 constraints

0 x4 3 -2 0 1 0 0 -1 10
1 x6 0 1* 0 0 -1 1 -2 1
0 x3 -2 0 1 0 0 0 1 1

C̃ -1 -1 0 0 1 0 3 Z = 1

CB B (0)x1 (+0)x2 (+0)x3 (+0)x4 (+0)x5 (+1)x6 (+1)x7 constraints

0 x4 3 0 0 1 -2 2 -5 12
0 x2 0 1 0 0 -1 1 -2 1
0 x3 -2 0 1 0 0 0 1 1

C̃ -1 0 0 0 1 1 1 Z = 0

Now move to phase two.

CB B (−3)x1 (+1)x2 (+1)x3 (+0)x4 (+0)x5 constraints

0 x4 3* 0 0 1 -2 12
1 x2 0 1 0 0 -1 1
1 x3 -2 0 1 0 0 1

C̃ -1 0 0 0 1 Z = 2

CB B (−3)x1 (+1)x2 (+1)x3 (+0)x4 (+0)x5 constraints

-3 x1 1 0 0 1/3 -2/3 4
1 x2 0 1 0 0 -1 1
1 x3 0 0 1 2/3 -4/3 9

C̃ 0 0 0 1/3 1/3 Z = −2



Remarks

• We may also consider variables without sign restriction. See §4.14.

• There are other methods for solving LP: Karmarkar’s method, interior point method.

For example, see §4.15 and wikipedia.

• One can use build in Matlab commands.

See https://www.mathworks.com/help/optim/ug/linprog.html

To solve minimization problem

min Z = c_1 x_1 + ... + c_n x_n

Subject to Ax \leq b, AAx = bb, L \leq x \leq U.

Input c = [c_1, ...., c_n], A, b, AA, bb, L, U.

If no inequality constraints, set A = [], b = [].

Use one of the following commands

x = linprog(c,A,b)

x = linprog(c,A,b,AA,bb)

x = linprog(c,A,b,AA,bb,L,U)

[x,fval] = linprog(___)

Theory behind the simplex algorithm

Theorem 1 A point in the feasible region of an LP is an extreme point if and only if it is a

basic feasible solution of the LP.

Proof. Every point in Rm is uniquely determine by m linearly independent equation in Rm. �

Theorem 2 Suppose an LP in standard form have basic feasible solutions v1, . . . , vk. Then

every point in the feasible region has the form v = v0 +
∑k

j=1 pjvj , where v0 is the zero vector or a

vector in the unbounded direction, p1, . . . , pk are non-negative numbers summing up to one.

Proof. By the theory of convex analysis. �

Theorem 3 If an maximization LP has an optimal solution, then it has an optimal basic

feasible solution.

Proof. If an LP has an optimal solution Z∗ with objective function

maxZ = c · x = c1x1 + · · ·+ cnxn,

then for any unbounded direction v0, we have c · (Mv0) ≤ Z∗ for any M > 0. So, c · v0 = 0. So, if

v = v0 +
∑k

j=1 pjvj attains the maximum, we have

c.(v0 +
k∑

j=1

pjvj) = c · (
k∑

j=1

pjvj) =
k∑

j=1

pjc · vj ≤ max{c · vj : 1 ≤ j ≤ k}. �



Variations of Simplex Algorithm

Goal programming

Suppose the feasible region for a set of constraints is empty. One may want to set up an

optimization problem to minimize the damage caused by the artificial variables.

Consider Example 10 in p. 191 in the textbook.

Let x1 be the number of minutes ad. in football game, and x2 be the number of minutes of TV ad.

There are three targeted groups, HIM, LIP, HIW, and the Budget constraints:

7x1 + 3x2 ≥ 40 (HIM constraint)

10x1 + 5x2 ≥ 60 (LIP constraint)

5x1 + 4x2 ≥ 35 (HIW constraint)

100x1 + 60x2 ≤ 600 (Budget constraint)

x1, x2 ≥ 0.

We can introduce deviational variables s+i , s
−
i and solve the following.

minZ = 200s−1 + 200s−2 + 50s−3

subject to:

7x1 + 3x2 + s−1 − s
+
1 = 40 (HIM constraint)

10x1 + 5x2 + s−2 − s
+
2 = 60 (LIP constraint)

5x1 + 4x2 + s−3 − s
+
3 = 35 (HIW constraint)

100x1 + 60x2 ≤ 600 (Budget constraint)

x1, x2,+s
−
1 , s

+
1 ,+s

−
2 , s

+
2 ,+s

−
3 , s

+
3 ≥ 0.

Solving the LP problem, we see that Z = 250 with (x1, x2, s
+
1 , s

−
3 ) = (6, 0, 2, 5) so that Goal 1

and Goal 2 are satisfied.

If one has to pay for the extra budget we can modify the objective function and the budget

constraint to:

maxZ = 200s−1 + 100s−2 + 50s−3 + s+4

100x1 + 600x2 + s−4 − s
+
4 = 600.

The solution becomes Z = 100/3 (x1, x2, s
+
1 , s

+
4 ) = (13, 10, 1, 100)/3; all three goals are met.

One may also impose penalty for the value s+i and add them (with suitable weights) to the

objective function.



Preemptive Goad Programming

If one does not know the exact weights of the different goals, one may consider the minZ =

P1s
−
1 + P2s

−
2 + P3s

−
3 with P1 > > > P2 > > > P3 and add the constraints

z1 − P1s
−
1 = 0, z2 − P2s

−
2 = 0 and z3 − P3s

−
3 = 0.

Adding P1· (HIM constraint), P2· (LIP constraint), P3· (HIW constraint) to these constraints, we

get

z1 + 7P1x1 + 3P1x2 − P1s
+
1 = 40P1,

z2 + 10P2x1 + 5P2x2 − Ps+2 = 60P2,

z3 + 5P3x1 + 4P3x2 − P3s
+
3 = 35P3.

Solving the LP problem, we get (z1, z2, z3) = (0, 0, 5P3) and (x1, x2, s
+
1 , s

−
3 ) = (6, 0, 2, 5) showing

that Goal 1 and Goal 2 are met.

One may change the order of P1, P2, P3 and get different solutions.

Scaling of the data

For an LP: maxZ = c · x with c = (c1, . . . , cn) and x = (x1, . . . , xn) s.t. Ax = b, x ≥ 0.

One may replace (c, [A|b]) by (γc,D[A|b]) for some suitable positive constant γ and diagonal

matrix D so that the entries in γc and D(A|b) are of comparable magnitudes to avoid unnecessary

rounding error.

The optimal solution x will not be changed, and the optimal Z value will be changed to γZ.


