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Sensitivity analysis and duality

After solving an LP

max Z = c¢-x subject to Az =b, x>0,

Notes on Chapters 5/6.

C.K. Li

we want to know how would the solution change if some of the given conditions change.

1. Changing the objective function coefficient of a nonbasic variable.

2. Changing the objective function coefficient of a basic variable.

3. Changing the value in b.

4. Changing the column of a nonbasic variable.

5. Adding a new variable.

6. Adding a new constraint.

If there are two variables, we can do some analysis on the graph.

Example The toy manufacturer:
max Z = 3x1 + 2x9

subject to
2x1 + 2 <100
T+ x9 < 80
r1 <40

x1,72 2 0.

100

40

70 80



Revised Simplex Method
To do the sensitivity analysis in the general setting, it is helpful to understand the revised
simplex method and the dual LP/.

Set up the LP problem: max Z = c¢- x subject to Az =b and x > 0,

with an initial basic feasible solution, where ¢ = (c1,...,¢p), 2 = (21, -+ ,x,), A is m X n.

Step 1. Set B be the m x m with columns from A corresponding to the basic variables.

Step 2. Compute C' = ¢ — cg B~ A. (Only compute those ¢; corresponding to nonbasic variables.)
If C is non-positive, we are done. Else, go to Step 3.

Step 3. Suppose A; correspond to the maximum ¢é&; > 0.

If B-'A; = (ay,...,am)" has only non-positive entries, then the problem is unbounded.

Otherwise, go to Step 4.

Step 4. Let B~ = (by,...,by)" and let j be such that b;/a; < by./as whenever ag > 0.
Replace the basic variable z; by ;. Go back to Step 2.

Here we may update the matrix B~! and B~'b for future use:
B AilAjy - Ay, | nlb] = (B~ Aul | B~ B8]
— [ejler-..ej_1Ajeji1 - e BT B
Advantages of the revised simplex method

1. No need to update the whole tableau if there are many variables (columns).
2. No need to store all the information; just the original A, the basic variables, B~!, and B~!b.
3. Less error in the iteration because the original A is used in each step.
4. The method is efficient if A is sparse or having other structure.

5. The idea is useful for duality and sensitivity analysis.



Back to sensitivity analysis

Example A toy company producing three products: z1,z2,x3 and set up the LP

max Z = 2x1 + 3x2 + x3

Subject to:
1 1 1
gl’l + gacg + §$5 <1 (labor)
1 4 7
—x1+ x99+ —x3 <1 (material)

3 3 3

x1,T2,T3 = 0.

Use simplex algorithm with slack variables x4, x5 > O:

Cp | B | (#2)x1 (+3)xz2 (+1)zs (0)zg4 (+1)xs | constraints
0 |z:| 1/3  1/3  1/3 1 0 1
0 |zs| 1/3 43 73 0 1 3
C 2 3 1 0 0 Z =0
Cp | B | (+2)z1 (+3)z2 (+1)zs (0)xzg (4+1)z5 | constraints
. 2 |z 1 0 -1 4 -1 1
3 | 22 0 1 2 —1 1 2
C 0 0 -3 -5 —1 Z =8

Case 1. Changing ¢; corresponding to non-basic variables.

Note that

53 263*(2,3) '(*1,2) 203*4.

So, if c3 < 4 we have the same optimum,; if ¢3 = 4 then there may be alternate optimum; if c¢5 > 4

then there may be improvement.

For instance, in our example, if c3 is changed to 6, then

Cp| B | (+2)z1 (+3)za (+6)zs (0)zy (+1)xs | constraints
2 |z 1 0 —1 4 -1 1
3 | x 0 1 2 -1 1 2
ol 0 0 2 5 1 Z =38
Cp | B | (+2)z1 (+3)z2 (+6)xzs (0)xzg (+1)z5 | constraints
2 |z1| 1 1/2 0 72 12 2
16 |as| 0 1/2 1 —1/2 1/2 1
C 0 —1 0 —4 -2 Z =10

In general, we analyze the change in & = ¢; — cg B~ A;.




Case 2. Changing c¢; corresponding to basic variables.
If we change c¢; corresponding to a basic variable x;, then ¢ = ¢ — cgB~'A in terms of cj.
For example, if we consider a variation of ¢; after getting the basic variables 1, zo for optimal
in our example, then
(C3,¢4,C5) = (c1 — 5, —4c1 + 3,¢1 — 3).

Hence
3<0 <= 1<5 4 <0< c¢>3/4, <0< c <3

Thus, we will use the same optimal solution (z1,...,x5) if and only if c5 € [3/4,3]. Of course, the
optimal value Z will change.

The optimal solution will change otherwise. For example if ¢; = 1, then the optimal solution is
(1,2, 23,24, 25) = (1,2,0,0,0) with Z = 7.

If ¢1 goes outside the range, we have to change ¢ and apply the Simplex algorithm again.

In general, we compute the entries in ¢ = ¢ — cg B~'A corresponding to the non-basic variable

to determine the range of change of ¢; and action needed.

Case 3 Changing ¢ in general.
If we get a solution for the basic variables x1,r3 and we want to change ¢, then we simply

compute

U - 112 0 7/2 —1/2
¢=c—cpB A= (c1,¢c2,c3,c1,¢5) — (c1,03) <0 12 1 —1/2 1/2

=(0,2c9 — ¢1 — ¢2,0,2¢4 — Tey + ¢3,2¢5 + ¢1 — ¢3) /2.

and determine the course of action.



Changing the vector b

1.

10.

11.

12.

. Now, if we change b from (;) to <2

. In our example, if we let b* = (

Note that in our example, the final tableau, the last column is B~'b with B = <1/ 3 1/ 3>

1/3 4/3
4 -1
-1 _
so that B —<_1 4>.

), then the last column of the final tableau will change

n()-0)

3
to

. Because B~1'A,C = ¢—c¢gB~1A do not change, we still have the same basic variables for the

solution.

. But (x1,x9,23) and Z change to (5,1,0) and Z = 13, respectively.

. If increasing a unit of by cost $4 (overtime cost), and the profit will increase by $(13—8) = $5.

So, it is worth doing the overtime.

. We will call the profit change corresponding to a unit change of the b; the shadow price.

Knowing the shadow price will tell us whether it is worthwhile to increase b;.

. In the final tableau, the shadow price corresponding to b; is computed by

CBB_I(b +ei) — CBB_lb = CBB_lei.
Thus, the entries in the row Cp B~ tell us the shadow price for each of the m basic variables.

by

3>, then in the final tableau the last column becomes

4b; — 3

—1p* 1

g = (13).
So, x1,x9 are the basic variables for the optimal solution if 3/4 < b; < 3.

The optimal value will be Z = 2(4by — 3) + 3(—b1 + 3) = 5b1 + 3.

What if b is changed, say, to (4,3), so that B! is no longer feasible? Then the tableau

changes to:

Cp| B | (+2)z1 (+3)z2 (+1)axs (0)z4 (4+1)zs | constraints
2 |z 1 0 -1 4 —1 13
3 | a2 0 1 2 -1 1 —1
C 0 0 -3 ) -1 Z =38

We will tackle this with dual LP theory.



Changing the matrix A.

Case 1. Adding a new decision variable ;.
In our example if we add another product, say, zg with a unit profit $3, and costing 1 unit of
labor and 1 unit of material. Then we update the ¢ vector by adding cg = 3, and add the column

Ag = (1,1)T in A corresponding to ¢ and compute
G =c¢ —cpB 'Ag =3 —(2,3)B 146 =3 — (5,1)-(1,1) = —3.

Because ¢g < 0, we still have the same optimal solution. If ¢ < 0, then we run the simplex

algorithm.

Case 2. Changing the resources requirements.
We need to change A and B accordingly. The solution may no longer be feasible (even if we

use the dual LP), and we may need to start all over again.

Case 3. Adding new constraints.

If a new constraint is added, say, x1 + 2x2 + x3 < 10 is the limit of administrative hours.

Check whether the current optimal solution satisfies the constraint. If yes, it will remains to be
an optimal solution.

If not, add a slack variable x¢ and consider the modified tableau:

Cp | B | (+2)z1 (+3)z2 (+1)zz (+0)zs (+1)zs (4+0)ze | constraints

2 | x 1 0 -1 4 -1 0 1

3 | @2 0 1 2 -1 1 0 2

0 | z¢ 1 2 1 0 0 1 4
C 0 0 -3 -5 -1 0

Cp| B | (+2)x1 (+3)z2 (+1)zs (+0)zgy (+1)zs (+0)zg | constraints

2 |1 1 0 1 4 1 0 1
—| 3 | 2 0 1 2 -1 1 0 2
0 | z¢ 0 0 2 2 —1* 1 1

C 0 0 -3 -5 —1 0

where the dual LP theory can be used.



Dual LP

Consider the following primal LP:

max Z = (c1,...,¢p) - (T1,...,2y) subject to Az < (bl,...,bm)T,
where z = (21,...,2,)T and A = (a;;) is m x n.
Then the dual LP is defined as
minW = (b1,...,bm) - (Y1,...,Ym) subject to ATy > (c1,...,¢ca)T, w1,..
where y = (y1,. .., ym)"-
Example (Dekota problem, p. 296) Primal problem
max Z = 60x1 + 3029 4+ 2023
subject to: 8x1 + 6y + w3 <48 (Lumber constraint)
4xq + 229 + 1.523 < 20 (Finishing constraint)
2x1 + 1.529 + 0.523 < 8 (Capentry constriant)
Z1,T2,T3 > 0.
Dual problem.
min W = 48y; 4+ 20y2 + 8ys
subject to: 8y + 4y + 2y3 > 60
6y1 + 2y2 + 1.5y3 > 30
y1 + 1.5ya + 0.5y3 > 20
Y1,Y2,Y3 > 0.
Example (Diet problem)
min W = 50y; + 20y2 + 30y3 + 80y4
subject to: 400y; + 200y2 + 150y3 + 500y, > 500  (Calorie constraint)
3y1 + 20 >6 (Chocolate constraint)
2y1 + 2ya+ 4dys+ 4ys >10  (Sugar constraint)
21+ dy2+ ys+  Sys =8

(Fat constraint)
Y1,Y2,Y3, Ya > 0.
The Primal problem:

max Z = 500x1 + 6x2 + 10x3 + 84

subject to: 40021 + 3zo + 223 + 224 < 50

200z + 222 + 223 + 44 < 20
1501’1

+ 43+ x4 <30
500z

+ 4x3 + dxy < 80
T1,T2,T3,T4 > 0.

Remark An interpretation of the dual problem.

L1y

S Ym > 0,



Finding the dual LP not in standard primal form

Example
max Z = 2x1 + xo
subject to r1+ To = 2
201 —x0 > 3
1 —220 <1

x1 >0, xo urs.

First set o = x; — x5 with m;, x5 > 0, and convert the problem to
max Z = 21 + 15 — x5
subject to T+ a3 —xy <2
—x1 —ag +xy < -2
-2z + a3 —x5 <3
T — m; +xzy <1
xl,x;,xg > 0.
The dual LP becomes
min W = 2y} — 2y{ + 3y2 + lys
subject to v — vl —2y2+y3 > 2
Y~y Y2 —y3 > 1
—y Ty —y2tys > —1
Y1s Y3 Y2, Y3 > 0.
We set y1 = v} — yf and get

The dual LP becomes:
min W = 2y; + 3y2 + y3
subject to y1+2y2 +ysz > 2
y1+y2—ys>1
—y1—Y2+ys>—1
Y1 urs, y2,y3 > 0.
Setting y1 = ¢} — v and g2 = —y2, we get
min W = 2y, + 392 + y3
subject to Y1 + 292 + y3 > 2
y1—Y2—ys=1
y1 urs, go <0, y3 > 0.



General rules for converting an LP to its dual.

Primal (Maximize)

max Z = clx

Dual (Minimize)
min W = by

A: coefficient matrix
b: Right-hand-side vector
c: Price vector

1th constraint is < type
1th constraint is > type
x; has urs

:17]‘ Z 0

l’j S 0

1th constraint is an equation

AT coefficient matrix

Cost vector

Right-hand-side vector

The dual variable y; has urs

The dual variable y; > 0

The dual variable y; < 0

jth dual constraint is an equation
jth dual constraint is > type

jth dual constraint is < type

Example 1 Primal LP
max Z = x1 + 4x9 + 3x3
subject to 2x1 4+ 310 — Dy < 2
31 —xo + 623 > 1
1 +x9t+a3=4
1 >0, 9 <0, x3 urs.
Duel LP
min W = 2y; + y2 + 4y3
subject to 21 +3y2 +y3 > 1
3y1 —y2 +y3 <4
—5y1 +6y2 +y3 =3

y1 >0, y2 <0, y3 urs.

Example 2 Primal LP
min Z = 2z, + 9 — x3
subject to T14+x0—23=1
T1— T2+ 133 > 2
T2 +x3 <3
1 >0, 9 <0, x3 urs.
Duel LP
max W = y1 + 2y + 3y3
subject to Y1 + Y2 <2
31 —y2+ys > 1
1 +y2t+ys=—1

yp urs, y2 >0, y3 <0.

Remark The dual of the dual of an LP is the original problem.




Theorem Consider the standard primal and dual LP
maxZ =clz, Az <b, >0 and minW =bly, ATy>c¢, y<0

with ¢ € R™", b € R™ A € R™*". If xg € R™, yp € R™ are vectors in the feasible regions so that
7* = cl'zg and W* = bTyq are feasible solutions of the two problems, then Z* < W*.

(1) If Z* = W*, then it is the common optimal solutions for the primal and dual LP’s.

(2) Two column vectors g € R™, yg € R™ in the feasible regions will give rise to the optimal

solution for the two problems if and only if

(WA= Do+ 9yl (b— Azg) =0, ie, (WA—-cao=1yl (- Azg) =0.

Proof. Let xy and yg be the vectors in the feasible regions giving rise to the Z* and W*. Then
Z* = c"zo < (ATyo) o = yf Amo <y b=b"yo = W™, (1)

The second assertion is clear.
Finally, by (1), the equality Z* = W* holds if and only if Z* = Tz = yI Azg = yl b= W*, i.e.,
(yd A — cT)zg = yl (b — Amg) = 0. The last assertion follows. O

Condition (2) is known as the complementary slackness principle for LP. It can be rephrased

as follows.

At the optimal solution:

o if b — Axg € C™ has positive entries, i.e., the non-binding constraints, then the entries in

1Yo € R™ equal zero;

o if c — ATyy € R™ has positive entries, then the entries in zy € R™ equal zero.

Conversely, if we get two feasible solutions xg € R", yg € R™ satisfying the condition
(Yo A — c")zo = yg (b — Awp) = 0,

then yOT Az is the optimal value for the two LP’s.



Example 1 Primal LP
max Z = x1 + 4xo + 313
subject to 2x1 4+ 3x2 — Dy < 2
31 —x0+ 623 > 1
1 +x9t+a3=4
x1 >0, 29 <0, x3 urs.
Duel LP
min W = 2y + y2 + 4y3
subject to 2y1 +3y2 +y3 > 1
3y1 —y2+y3 <4
—5y1 + 6y2 +y3 =3
y1 >0, y2 <0, y3 urs.

In this example, 2o = (0,0,4)” and yo = (0,0,3)” are feasible solutions such that
lzg =0Ty =12

is the optimal for both the primal and dual problems.

Clearly, the complementary slackness conditions holds:

2 3 =5 2 -5 22
ForA=13 -1 6 |,b—Axg= (1] —-4]| 6 | =[-23], and
1 1 1 4 1 0

ygA —Cc= 3(17 17 1) - (1747 3) = (27 _170)'

Example 2 Primal LP
min Z = 2x1 + o — x3
subject to T +x9—2x3=1
T1 — T2+ x3 > 2
x2+x3 <3
x1 >0, 9 <0, x3 urs.
Duel LP
max W = y; + 2y2 + 3y3
subject to Y1 + Yo <2
3y1 —y2+ys > 1
—y1+ty2+ys=—1
y1 urs, y2 >0, y3 <O0.

In this example, 2o = (2,0,1)” and yo = (1,0,0)7 are feasible solutions such that

lrg=3>1=0bly,.

The two LP’s should have a finite optimal solution assuming the same value.



The dual simplex method

Theorem Consider the standard primal and dual problem. Ezactly one of the following holds.
(a) If both problem are feasible, then both of them have optimal solutions having the same value.
(b) If one problem has unbounded solution, then the other problem has no feasible solution.

(c) Both problem are infeasible.
Proof. Proof of (a) is tricky. Proof of (b) is easy. If (a) and (b) do not hold, then (c) holds. OJ
Note If P, D stand for the primal LP and dual LP.
1) P has finite optimal if and only if D has finite optimal.
2) if P is unbounded then D is infeasible;

(1)

(2)

(3) if D is unbounded then P is infeasible;

(4) if P is infeasible then D is unbounded or infeasible;
(5)

5) if D is infeasible then P is unbounded or infeasible.

Solving the primal LP to get the solution for the dual LP

Consider the primal problem in standard form

maxZ = ¢l x subject to Axr=0b, xz>0.

The dual LP has the form
min W = by, subject to ATy < ¢, all entries of y has urs .

Note that if g is an basic feasible optimal solution, then C' = ¢ —CEB “lA<o0. Ify! = CEB -1
then
c'>yTA and W=ylb= chflb =7

So, Z = W is the optimal solution of the LP’s; y = CEB*1 is an optimal solution for the duel LP.



Example Primal LP

min Z = —32x1 + xo + T3

subject to r1 — 229 + T3 + 24 =11
—4x1 4+ 1o + 223 —x5=3
—21 + x3 =1

T1,T2,T3,T4,25 > 0

Duel LP max W = 11y; + 3y2 + y3
subject to y1 — 4dys — 2y3 < —3
—2y1 + Yo <1
y1+2y2+ys <1
(1 <0
—Y2 <0

Y1, Y2, Y3 urs.
We can solve the primal LP to get (x1,x2,23) = (4,1,9) with Z = —2.
Then y = cgB~! = (-3,1,1)B~! = (—1,1,2)/3 is the dual optimal solution.



Duel Simplex Method: Solving the dual LP to get the solution for the primal LP

T2 subject to Az < b, x > 0, and get an basic feasible

If one solves the primal LP max Z = ¢
optimal solution, the y = ¢gB~! is a optimal solution for the dual LP minZ = b’y subject to
ATy > ¢, entries of y have unrestricted signs.

If we run into a situation that
C=c"— c:gB_lA >0,
then we have the dual feasibility vector y with y7 = chT.
Case 1. If it corresponds to a primal feasible vector x, we are done.
Case 2. If not, apply the simplex algorithm to the dual problem (in the same tableau) as follows.

Step 1. Choose b = B~1b with the most negative value (shadow price), say, by.

Step 2. Check whether there is a,; in A = B7'A with negative coefficients. If no, the primal

problem is infeasible. If yes, select a,; such that ¢;/a,; is maximum among those j with a,; < 0.

Example min Z = 1 + 422 + 3x4
Subject to: 1+ 2x9 — 23+ x4 > 3
—2x1 — xo + 4xz + x4 > 2

T1,%2,T3,T4 2 0.
Use excess variables x5, zg to get the standard form
min Z = x1 + 4z + 3x4
Subject to: r1+ 229 — 3+ x4 — T5 =3

—2x1—xo+4x3t+rTs —T6=2

x1,T2,T3,T4,%5,T6 > 0.

Cp| B | M)z (+4)z2 (+0)xz (+3)xa (+0)zs (4+0)ze | constraints
0 |xz5 | —1% -2 1 -1 1 0 -3
0 | =g 2 1 —4 —1 0 1 -2
C 1 4 0 3 0 0

Here, we choose x; because of the ratio of (—1, -2, —1) to (1,4,3) equals (—1,—2,—-3).

Cg| B | (1l)z1 (+4)z2 (+0)zs (+3)xs (+0)zs (+0)xs | constraints

1 | 1 2 -1 1 -1 0 3
Te 0 -3 —2% -3 2 1 —8
C 0 2 1 2 1 0

Here we choose x3 because the ratio of (—3,—-2,—-3) to (2,1,2) is (—2/3,—-1/2,-2/3).

Cp| B|(1)zy (+4)z2 (+0)zg (+3)za (+0)zs (+0)zg | constraints

1 [z | 1 7/2 0 5/2 —2 —1/2 7
z3 | 0 3/2 1 3/2 ~1 ~1/2 4
cl o 1/2 0 1/2 2 1/2 Z=1




Back to the examples in sensitivity analysis.

Example

Cp | B |(+2)z1 (+3)z2 (+1)xzs (0)z4 (+1)z5 | constraints

2 |z 1 0 —1 4 -1 13
3 | z2 0 1 2 —1* 1 -1
C 0 0 -3 -5 -1
Cp | B | (+2)x1 (+3)xz2 (+1)zs (0)z4 (+1)xs | constraints
N 2 | a1 1 4 7 0 3 9
0 | 2y 0 -1 -2 1 -1 1
C 0 -5 —13 0 —6 Z =18
Example
Cp| B | (+2)x1 (+3)z2 (+1D)zs (+0)zy (+1)zs (+0)zg | constraints
2 | x 1 0 —1 4 —1 0 1
3 | a2 0 1 2 —1 1 0 2
0 |zs| 0 0 9 9 R 1 -
C 0 0 -3 -5 -1 0
Cp| B | (+2)z1 (+3)z2 (+1)zs (+0)zy4 (+1)zs (+0)ze | constraints
2 | a1 1 0 1 6 0 —1 2
= 3 | x2 0 1 0 -3 0 1 1
0 | zg 0 0 2 2 1 —1 1
C 0 0 —1 -3 0 —1 Z =1




