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Sensitivity analysis and duality

After solving an LP

maxZ = c · x subject to Ax = b, x ≥ 0,

we want to know how would the solution change if some of the given conditions change.

1. Changing the objective function coefficient of a nonbasic variable.

2. Changing the objective function coefficient of a basic variable.

3. Changing the value in b.

4. Changing the column of a nonbasic variable.

5. Adding a new variable.

6. Adding a new constraint.

If there are two variables, we can do some analysis on the graph.

Example The toy manufacturer:

max Z = 3x1 + 2x2

subject to

2x1 + x2 ≤ 100

x1 + x2 ≤ 80

x1 ≤ 40

x1, x2 ≥ 0.



Revised Simplex Method

To do the sensitivity analysis in the general setting, it is helpful to understand the revised

simplex method and the dual LP/.

Set up the LP problem: maxZ = c · x subject to Ax = b and x ≥ 0,

with an initial basic feasible solution, where c = (c1, . . . , cn), x = (x1, · · · , xn), A is m× n.

Step 1. Set B be the m×m with columns from A corresponding to the basic variables.

Step 2. Compute C̃ = c− cBB
−1A. (Only compute those c̃j corresponding to nonbasic variables.)

If C̃ is non-positive, we are done. Else, go to Step 3.

Step 3. Suppose Ai correspond to the maximum c̃i > 0.

If B−1Ai = (ã1, . . . , ãm)T has only non-positive entries, then the problem is unbounded.

Otherwise, go to Step 4.

Step 4. Let B−1b = (b̃1, . . . , b̃m)T and let j be such that b̃j/ãj ≤ b̃k/ãk whenever ãk > 0.

Replace the basic variable xj by xi. Go back to Step 2.

Here we may update the matrix B−1 and B−1b for future use:

B−1[Ai|Aj1 · · ·Ajm |Im|b] = [B−1Ai|Im|B−1|B−1b]

→ [ej |e1 . . . ej−1Âjej+1 · · · en|B̂−1|B̂−1b].

Advantages of the revised simplex method

1. No need to update the whole tableau if there are many variables (columns).

2. No need to store all the information; just the original A, the basic variables, B−1, and B−1b.

3. Less error in the iteration because the original A is used in each step.

4. The method is efficient if A is sparse or having other structure.

5. The idea is useful for duality and sensitivity analysis.



Back to sensitivity analysis

Example A toy company producing three products: x1, x2, x3 and set up the LP

maxZ = 2x1 + 3x2 + x3

Subject to:
1

3
x1 +

1

3
x2 +

1

3
x3 ≤ 1 (labor)

1

3
x1 +

4

3
x2 +

7

3
x3 ≤ 1 (material)

x1, x2, x3 ≥ 0.

Use simplex algorithm with slack variables x4, x5 ≥ 0:

CB B (+2)x1 (+3)x2 (+1)x3 (0)x4 (+1)x5 constraints

0 x4 1/3 1/3 1/3 1 0 1
0 x5 1/3 4/3 7/3 0 1 3

C̃ 2 3 1 0 0 Z = 0

→

CB B (+2)x1 (+3)x2 (+1)x3 (0)x4 (+1)x5 constraints

2 x1 1 0 -1 4 −1 1
3 x2 0 1 2 −1 1 2

C̃ 0 0 −3 −5 −1 Z = 8

Case 1. Changing ci corresponding to non-basic variables.

Note that

c̃3 = c3 − (2, 3) · (−1, 2) = c3 − 4.

So, if c3 < 4 we have the same optimum; if c3 = 4 then there may be alternate optimum; if c3 > 4

then there may be improvement.

For instance, in our example, if c3 is changed to 6, then

CB B (+2)x1 (+3)x2 (+6)x3 (0)x4 (+1)x5 constraints

2 x1 1 0 −1 4 −1 1
3 x2 0 1 2 −1 1 2

C̃ 0 0 2 −5 −1 Z = 8

→

CB B (+2)x1 (+3)x2 (+6)x3 (0)x4 (+1)x5 constraints

2 x1 1 1/2 0 7/2 −1/2 2
6 x3 0 1/2 1 −1/2 1/2 1

C̃ 0 −1 0 −4 −2 Z = 10

In general, we analyze the change in c̃i = ci − cBB
−1Ai.



Case 2. Changing cj corresponding to basic variables.

If we change cj corresponding to a basic variable xj , then c̃ = c− cBB
−1A in terms of cj .

For example, if we consider a variation of c1 after getting the basic variables x1, x2 for optimal

in our example, then

(c̃3, c̃4, c̃5) = (c1 − 5,−4c1 + 3, c1 − 3).

Hence

c̃3 ≤ 0 ⇐⇒ c1 ≤ 5 c̃4 ≤ 0 ⇐⇒ c1 ≥ 3/4, c̃5 ≤ 0 ⇐⇒ c1 ≤ 3.

Thus, we will use the same optimal solution (x1, . . . , x5) if and only if c3 ∈ [3/4, 3]. Of course, the

optimal value Z will change.

The optimal solution will change otherwise. For example if c1 = 1, then the optimal solution is

(x1, x2, x3, x4, x5) = (1, 2, 0, 0, 0) with Z = 7.

If c1 goes outside the range, we have to change c̃ and apply the Simplex algorithm again.

In general, we compute the entries in c̃ = c− cBB
−1A corresponding to the non-basic variable

to determine the range of change of cj and action needed.

Case 3 Changing c in general.

If we get a solution for the basic variables x1, x3 and we want to change c, then we simply

compute

c̃ = c− cBB
−1A = (c1, c2, c3, c4, c5)− (c1, c3)

(
1 1/2 0 7/2 −1/2
0 1/2 1 −1/2 1/2

)
= (0, 2c2 − c1 − c2, 0, 2c4 − 7c1 + c3, 2c5 + c1 − c3)/2.

and determine the course of action.



Changing the vector b

1. Note that in our example, the final tableau, the last column is B−1b with B =

(
1/3 1/3
1/3 4/3

)
so that B−1 =

(
4 −1
−1 4

)
.

2. Now, if we change b from

(
1
3

)
to

(
2
3

)
, then the last column of the final tableau will change

to

B−1
(

2
3

)
=

(
5
1

)
.

3. Because B−1A, C̃ = c− cBB
−1A do not change, we still have the same basic variables for the

solution.

4. But (x1, x2, x3) and Z change to (5, 1, 0) and Z = 13, respectively.

5. If increasing a unit of b1 cost $4 (overtime cost), and the profit will increase by $(13−8) = $5.

So, it is worth doing the overtime.

6. We will call the profit change corresponding to a unit change of the bi the shadow price.

7. Knowing the shadow price will tell us whether it is worthwhile to increase bi.

8. In the final tableau, the shadow price corresponding to bi is computed by

cBB
−1(b + ei)− cBB

−1b = cBB
−1ei.

Thus, the entries in the row CBB
−1 tell us the shadow price for each of the m basic variables.

9. In our example, if we let b∗ =

(
b1
3

)
, then in the final tableau the last column becomes

B−1b∗ =

(
4b1 − 3
−b1 + 3

)
.

10. So, x1, x2 are the basic variables for the optimal solution if 3/4 ≤ b1 ≤ 3.

11. The optimal value will be Z = 2(4b1 − 3) + 3(−b1 + 3) = 5b1 + 3.

12. What if b is changed, say, to (4, 3)T , so that B−1b is no longer feasible? Then the tableau

changes to:

CB B (+2)x1 (+3)x2 (+1)x3 (0)x4 (+1)x5 constraints

2 x1 1 0 −1 4 −1 13
3 x2 0 1 2 −1∗ 1 −1

C̃ 0 0 −3 −5 −1 Z = 8

We will tackle this with dual LP theory.



Changing the matrix A.

Case 1. Adding a new decision variable xn+1.

In our example if we add another product, say, x6 with a unit profit $3, and costing 1 unit of

labor and 1 unit of material. Then we update the c vector by adding c6 = 3, and add the column

A6 = (1, 1)T in A corresponding to x6 and compute

c̃6 = c6 − cBB
−1A6 = 3− (2, 3)B−1A6 = 3− (5, 1) · (1, 1) = −3.

Because c̃6 ≤ 0, we still have the same optimal solution. If c̃6 < 0, then we run the simplex

algorithm.

Case 2. Changing the resources requirements.

We need to change A and B accordingly. The solution may no longer be feasible (even if we

use the dual LP), and we may need to start all over again.

Case 3. Adding new constraints.

If a new constraint is added, say, x1 + 2x2 + x3 ≤ 10 is the limit of administrative hours.

Check whether the current optimal solution satisfies the constraint. If yes, it will remains to be

an optimal solution.

If not, add a slack variable x6 and consider the modified tableau:

CB B (+2)x1 (+3)x2 (+1)x3 (+0)x4 (+1)x5 (+0)x6 constraints

2 x1 1 0 -1 4 −1 0 1
3 x2 0 1 2 −1 1 0 2
0 x6 1 2 1 0 0 1 4

C̃ 0 0 −3 −5 −1 0

→

CB B (+2)x1 (+3)x2 (+1)x3 (+0)x4 (+1)x5 (+0)x6 constraints

2 x1 1 0 -1 4 −1 0 1
3 x2 0 1 2 −1 1 0 2
0 x6 0 0 -2 -2 −1∗ 1 -1

C̃ 0 0 −3 −5 −1 0

where the dual LP theory can be used.



Dual LP

Consider the following primal LP:

maxZ = (c1, . . . , cn) · (x1, . . . , xn) subject to Ax ≤ (b1, . . . , bm)T , x1, . . . , xn ≥ 0,

where x = (x1, . . . , xn)T and A = (aij) is m× n.

Then the dual LP is defined as

minW = (b1, . . . , bm) · (y1, . . . , ym) subject to AT y ≥ (c1, . . . , cn)T , y1, . . . , ym ≥ 0,

where y = (y1, . . . , ym)T .

Example (Dekota problem, p. 296) Primal problem

maxZ = 60x1 + 30x2 + 20x3

subject to: 8x1 + 6x2 + x3 ≤ 48 (Lumber constraint)

4x1 + 2x2 + 1.5x3 ≤ 20 (Finishing constraint)

2x1 + 1.5x2 + 0.5x3 ≤ 8 (Capentry constriant)

x1, x2, x3 ≥ 0.

Dual problem.

minW = 48y1 + 20y2 + 8y3

subject to: 8y1 + 4y2 + 2y3 ≥ 60

6y1 + 2y2 + 1.5y3 ≥ 30

y1 + 1.5y2 + 0.5y3 ≥ 20

y1, y2, y3 ≥ 0.

Example (Diet problem)

minW = 50y1 + 20y2 + 30y3 + 80y4

subject to: 400y1 + 200y2 + 150y3 + 500y4 ≥ 500 (Calorie constraint)

3y1 + 2y2 ≥ 6 (Chocolate constraint)

2y1 + 2y2 + 4y3 + 4y4 ≥ 10 (Sugar constraint)

2y1 + 4y2 + y3 + 5y4 ≥ 8 (Fat constraint)

y1, y2, y3, y4 ≥ 0.

The Primal problem:

maxZ = 500x1 + 6x2 + 10x3 + 8x4

subject to: 400x1 + 3x2 + 2x3 + 2x4 ≤ 50

200x1 + 2x2 + 2x3 + 4x4 ≤ 20

150x1 + 4x3 + x4 ≤ 30

500x1 + 4x3 + 5x4 ≤ 80

x1, x2, x3, x4 ≥ 0.

Remark An interpretation of the dual problem.



Finding the dual LP not in standard primal form

Example

maxZ = 2x1 + x2

subject to x1 + x2 = 2

2x1 − x2 ≥ 3

x1 − x2 ≤ 1

x1 ≥ 0 , x2 urs.

First set x2 = x+2 − x−2 with x+2 , x
−
2 ≥ 0, and convert the problem to

maxZ = 2x1 + x+2 − x−2
subject to x1 + x+2 − x−2 ≤ 2

−x1 − x+2 + x−2 ≤ −2

−2x1 + x+2 − x−2 ≤ 3

x1 − x+2 + x−2 ≤ 1

x1, x
+
2 , x

−
2 ≥ 0.

The dual LP becomes

minW = 2y′1 − 2y′′1 + 3y2 + 1y3

subject to y′1 − y′′1 − 2y2 + y3 ≥ 2

y′1 − y′′1 + y2 − y3 ≥ 1

−y′1 + y′′2 − y2 + y3 ≥ −1

y′1, y
′′
2 , y2, y3 ≥ 0.

We set y1 = y′1 − y′′1 and get

The dual LP becomes:

minW = 2y1 + 3y2 + y3

subject to y1 + 2y2 + y3 ≥ 2

y1 + y2 − y3 ≥ 1

−y1 − y2 + y3 ≥ −1

y1 urs, y2, y3 ≥ 0.

Setting y1 = y′1 − y′′1 and ŷ2 = −y2, we get

minW = 2y1 + 3ŷ2 + y3

subject to y1 + 2ŷ2 + y3 ≥ 2

y1 − ŷ2 − y3 = 1

y1 urs, ŷ2 ≤ 0, y3 ≥ 0.



General rules for converting an LP to its dual.

Primal (Maximize) Dual (Minimize)
maxZ = cTx minW = bT y

A: coefficient matrix AT : coefficient matrix
b: Right-hand-side vector Cost vector
c: Price vector Right-hand-side vector
ith constraint is an equation The dual variable yi has urs
ith constraint is ≤ type The dual variable yi ≥ 0
ith constraint is ≥ type The dual variable yi ≤ 0
xj has urs jth dual constraint is an equation
xj ≥ 0 jth dual constraint is ≥ type
xj ≤ 0 jth dual constraint is ≤ type

Example 1 Primal LP

maxZ = x1 + 4x2 + 3x3

subject to 2x1 + 3x2 − 5x3 ≤ 2

3x1 − x2 + 6x3 ≥ 1

x1 + x2 + x3 = 4

x1 ≥ 0, x2 ≤ 0, x3 urs.

Duel LP

minW = 2y1 + y2 + 4y3

subject to 2y1 + 3y2 + y3 ≥ 1

3y1 − y2 + y3 ≤ 4

−5y1 + 6y2 + y3 = 3

y1 ≥ 0, y2 ≤ 0, y3 urs.

Example 2 Primal LP

minZ = 2x1 + x2 − x3

subject to x1 + x2 − x3 = 1

x1 − x2 + x3 ≥ 2

x2 + x3 ≤ 3

x1 ≥ 0, x2 ≤ 0, x3 urs.

Duel LP

maxW = y1 + 2y2 + 3y3

subject to y1 + y2 ≤ 2

3y1 − y2 + y3 ≥ 1

−y1 + y2 + y3 = −1

y1 urs, y2 ≥ 0, y3 ≤ 0.

Remark The dual of the dual of an LP is the original problem.



Theorem Consider the standard primal and dual LP

maxZ = cTx, Ax ≤ b, x ≥ 0 and minW = bT y, AT y ≥ c, y ≤ 0

with c ∈ Rn, b ∈ Rm, A ∈ Rm×n. If x0 ∈ Rn, y0 ∈ Rm are vectors in the feasible regions so that

Z∗ = cTx0 and W ∗ = bT y0 are feasible solutions of the two problems, then Z∗ ≤W ∗.

(1) If Z∗ = W ∗, then it is the common optimal solutions for the primal and dual LP’s.

(2) Two column vectors x0 ∈ Rn, y0 ∈ Rm in the feasible regions will give rise to the optimal

solution for the two problems if and only if

(yT0 A− cT )x0 + yT0 (b−Ax0) = 0, i.e., (yT0 A− cT )x0 = yT0 (b−Ax0) = 0.

Proof. Let x0 and y0 be the vectors in the feasible regions giving rise to the Z∗ and W ∗. Then

Z∗ = cTx0 ≤ (AT y0)
Tx0 = yT0 Ax0 ≤ yT0 b = bT y0 = W ∗. (1)

The second assertion is clear.

Finally, by (1), the equality Z∗ = W ∗ holds if and only if Z∗ = cTx = yT0 Ax0 = yT0 b = W ∗, i.e.,

(yT0 A− cT )x0 = yT0 (b−Ax0) = 0. The last assertion follows. �

Condition (2) is known as the complementary slackness principle for LP. It can be rephrased

as follows.

At the optimal solution:

• if b − Ax0 ∈ Cm has positive entries, i.e., the non-binding constraints, then the entries in

y0 ∈ Rm equal zero;

• if c−AT y0 ∈ Rn has positive entries, then the entries in x0 ∈ Rn equal zero.

Conversely, if we get two feasible solutions x0 ∈ Rn, y0 ∈ Rm satisfying the condition

(yT0 A− cT )x0 = yT0 (b−Ax0) = 0,

then yT0 Ax0 is the optimal value for the two LP’s.



Example 1 Primal LP

maxZ = x1 + 4x2 + 3x3

subject to 2x1 + 3x2 − 5x3 ≤ 2

3x1 − x2 + 6x3 ≥ 1

x1 + x2 + x3 = 4

x1 ≥ 0, x2 ≤ 0, x3 urs.

Duel LP

minW = 2y1 + y2 + 4y3

subject to 2y1 + 3y2 + y3 ≥ 1

3y1 − y2 + y3 ≤ 4

−5y1 + 6y2 + y3 = 3

y1 ≥ 0, y2 ≤ 0, y3 urs.

In this example, x0 = (0, 0, 4)T and y0 = (0, 0, 3)T are feasible solutions such that

cTx0 = bT y0 = 12

is the optimal for both the primal and dual problems.

Clearly, the complementary slackness conditions holds:

For A =

2 3 −5
3 −1 6
1 1 1

, b−Ax0 =

2
1
4

− 4

−5
6
1

 =

 22
−23

0

, and

yT0 A− c = 3(1, 1, 1)− (1, 4, 3) = (2,−1, 0).

Example 2 Primal LP

minZ = 2x1 + x2 − x3

subject to x1 + x2 − x3 = 1

x1 − x2 + x3 ≥ 2

x2 + x3 ≤ 3

x1 ≥ 0, x2 ≤ 0, x3 urs.

Duel LP

maxW = y1 + 2y2 + 3y3

subject to y1 + y2 ≤ 2

3y1 − y2 + y3 ≥ 1

−y1 + y2 + y3 = −1

y1 urs, y2 ≥ 0, y3 ≤ 0.

In this example, x0 = (2, 0, 1)T and y0 = (1, 0, 0)T are feasible solutions such that

cTx0 = 3 > 1 = bT y0.

The two LP’s should have a finite optimal solution assuming the same value.



The dual simplex method

Theorem Consider the standard primal and dual problem. Exactly one of the following holds.

(a) If both problem are feasible, then both of them have optimal solutions having the same value.

(b) If one problem has unbounded solution, then the other problem has no feasible solution.

(c) Both problem are infeasible.

Proof. Proof of (a) is tricky. Proof of (b) is easy. If (a) and (b) do not hold, then (c) holds. �

Note If P,D stand for the primal LP and dual LP.

(1) P has finite optimal if and only if D has finite optimal.

(2) if P is unbounded then D is infeasible;

(3) if D is unbounded then P is infeasible;

(4) if P is infeasible then D is unbounded or infeasible;

(5) if D is infeasible then P is unbounded or infeasible.

Solving the primal LP to get the solution for the dual LP

Consider the primal problem in standard form

maxZ = cTx subject to Ax = b, x ≥ 0.

The dual LP has the form

minW = bT y, subject to AT y ≤ c, all entries of y has urs .

Note that if x0 is an basic feasible optimal solution, then C̃ = cT−cTBB−1A ≤ 0. If yT = cTBB
−1,

then

cT ≥ yTA and W = yT b = cTBB
−1b = Z.

So, Z = W is the optimal solution of the LP’s; y = cTBB
−1 is an optimal solution for the duel LP.



Example Primal LP

minZ = −32x1 + x2 + x3

subject to x1 − 2x2 + x3 + x4 = 11

−4x1 + x2 + 2x3 − x5 = 3

−2x1 + x3 = 1

x1, x2, x3, x4, x5 ≥ 0

Duel LP maxW = 11y1 + 3y2 + y3

subject to y1 − 4y2 − 2y3 ≤ −3

−2y1 + y2 ≤ 1

y1 + 2y2 + y3 ≤ 1

y1 ≤ 0

−y2 ≤ 0

y1, y2, y3 urs.

We can solve the primal LP to get (x1, x2, x3) = (4, 1, 9) with Z = −2.

Then y = cBB
−1 = (−3, 1, 1)B−1 = (−1, 1, 2)/3 is the dual optimal solution.



Duel Simplex Method: Solving the dual LP to get the solution for the primal LP

If one solves the primal LP maxZ = cTx subject to Ax ≤ b, x ≥ 0, and get an basic feasible

optimal solution, the y = cBB
−1 is a optimal solution for the dual LP minZ = bT y subject to

AT y ≥ c, entries of y have unrestricted signs.

If we run into a situation that

C̃ = cT − cTBB
−1A ≥ 0,

then we have the dual feasibility vector y with yT = cTBB
T .

Case 1. If it corresponds to a primal feasible vector x, we are done.

Case 2. If not, apply the simplex algorithm to the dual problem (in the same tableau) as follows.

Step 1. Choose b̃ = B−1b with the most negative value (shadow price), say, b̃r.

Step 2. Check whether there is ãrj in Ã = B−1A with negative coefficients. If no, the primal

problem is infeasible. If yes, select ãrj such that cj/ãrj is maximum among those j with ãrj < 0.

Example minZ = x1 + 4x2 + 3x4

Subject to: x1 + 2x2 − x3 + x4 ≥ 3

−2x1 − x2 + 4x3 + x4 ≥ 2

x1, x2, x3, x4 ≥ 0.

Use excess variables x5, x6 to get the standard form

minZ = x1 + 4x2 + 3x4

Subject to: x1 + 2x2 − x3 + x4 − x5 = 3

−2x1 − x2 + 4x3 + x4 − x6 = 2

x1, x2, x3, x4, x5, x6 ≥ 0.

CB B (1)x1 (+4)x2 (+0)x3 (+3)x4 (+0)x5 (+0)x6 constraints

0 x5 −1* −2 1 −1 1 0 −3
0 x6 2 1 −4 −1 0 1 −2

C̃ 1 4 0 3 0 0

Here, we choose x1 because of the ratio of (−1,−2,−1) to (1, 4, 3) equals (−1,−2,−3).

CB B (1)x1 (+4)x2 (+0)x3 (+3)x4 (+0)x5 (+0)x6 constraints

1 x1 1 2 −1 1 −1 0 3
0 x6 0 −3 −2* −3 2 1 −8

C̃ 0 2 1 2 1 0

Here we choose x3 because the ratio of (−3,−2,−3) to (2, 1, 2) is (−2/3,−1/2,−2/3).

CB B (1)x1 (+4)x2 (+0)x3 (+3)x4 (+0)x5 (+0)x6 constraints

1 x1 1 7/2 0 5/2 −2 −1/2 7
0 x3 0 3/2 1 3/2 −1 −1/2 4

C̃ 0 1/2 0 1/2 2 1/2 Z = 7



Back to the examples in sensitivity analysis.

Example

CB B (+2)x1 (+3)x2 (+1)x3 (0)x4 (+1)x5 constraints

2 x1 1 0 −1 4 −1 13
3 x2 0 1 2 −1∗ 1 −1

C̃ 0 0 −3 −5 −1

→

CB B (+2)x1 (+3)x2 (+1)x3 (0)x4 (+1)x5 constraints

2 x1 1 4 7 0 3 9
0 x4 0 −1 −2 1 −1 1

C̃ 0 −5 −13 0 −6 Z = 18

Example

CB B (+2)x1 (+3)x2 (+1)x3 (+0)x4 (+1)x5 (+0)x6 constraints

2 x1 1 0 −1 4 −1 0 1
3 x2 0 1 2 −1 1 0 2
0 x5 0 0 −2 −2 −1∗ 1 −1

C̃ 0 0 −3 −5 −1 0

→

CB B (+2)x1 (+3)x2 (+1)x3 (+0)x4 (+1)x5 (+0)x6 constraints

2 x1 1 0 1 6 0 −1 2
3 x2 0 1 0 −3 0 1 1
0 x6 0 0 2 2 1 −1 1

C̃ 0 0 −1 −3 0 −1 Z = 7


