Example (of unbounded solution) If in a maximization problem involving wy,...,25 > 0

satisfying 2 equations.

Suppose (x1,:x2, T3, w4, 75) = (0,0,0,8,7) is a basic feasible solution. If ¢, =1 > 0 and the

recduced system is

-ry 4y =8,

=3+ =T

Then we can increase x; indefinitely, and conclude that we have an unbounded solution.

Example of unbounded solution arising in the iteration process

Cp| B | (22 (+3)r2 (+0)az (40)xy | constraints
0 | xa 1 -1 1 0 2
0 | =4 -3 1 0 1 4
cl 2 3 0 0 Z=0
Cul B2z (4+3)x (+0)ag (+0)xy | constraints
0 @y -2 0 1 1 6
3 |3 -3 1 0 1 4
C 11 0 0 -3 Z =12
Special cases one may encounter
Alternate Optima
Suppose the iteration leads to:
Cp| B | (+3)a1 (+2)x2 (40)zz (+0)zq (+0)xs | constraints
0 [a3| O 0 1 -1/5  8/5 6
2 x| 0O 1 0 /5  -3/5 1
3 (| 1 0 0 1/5 2/5 4
C 0 0 0 -1 0 [ Z2=14)-

The non-basic variable zg has zero relative profit. We can use it to

replace 3 and get

Cg| B (+3)r1 (+2)z2 (4+0)xsz (+0)zq4 (+0)as | constraints
0 |z5| O 0 5/8  -1/8 1 1574
2 | x 0 1 3/8 1/8 0 13/4
3 [m | 1 0 /4 1/ 0 5/2
C 0 0} 0 = 0 (Z=14"

Unique optimum
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If all the non-basic variables has negative relative-profit; ¢heir the problem has a unique solutions

,;J shon.
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Ties in the sclection of non-basic variable

Suppose &; is maximun and in the selection of basic variable ; Lo be replaced, Lhere are ties

in the minimum ratio b;/@;, then we can choose any onc of the x; to be replaced.

Other degeneracy occurs when a basic variable ; = 0. Then a change of basic variable may

lead to no improvement even if we apply the simplex algoritlun.

Example

* Two more iterations yield (i), 1y, rg)

) r
14 L
Cp| BTz (+0)zz (+0)zy (+2)xs  (+0)xs (+3/2)xg | constraints |
ERENEE 0 0 1= -1 0 2
L0 || O 1 0 2 0 1 4
l 0 |ay] 0 0 1 1 1 1 3
_1¢] o 0 0 2 0 3/2 Z=0_|
(Cp | B0z (+0)ra (+0)xs (+2)74 (+0)z5 (+3/2)xg | constraints
[ 2 |z, 1 0 0 1 -1 (0] 2
0 | a2 -2 1 0 0 2% 1 0
KEEI S 0 1 0 2 1 1
c| -2 0 0 0 ) 3/2 | Z=4
Cr (0)x1  (+0)x2 (+0)zz (+2)xs (+0)xs (+3/2)zg | constraints
2 (2] 0 172 0 1 0 1/2 3
0 | ag -1 1/2 0 0 1 1/2 0
| 0 £y 1 -1 1 0 0 0 1
[ &0 -1 0 0 2 1/2 Z=1

= (1,1,2) as the optimal solution with Z = §.

In really bad sitnation, we might even have cycling issuc.

In practice, we are safe if basic feasible solutions always have positive entries (non-degenerate

probleis).

As long as there is a positive &, we should try to improve the solution though it might incrcase

the number of steps in the caleulation, but it will not affect the optimal value Z.



§4.12 Finding an initial solution - Big M method, and detecting infeasible problem

O‘J\M e }
. N 4:,‘&4 f&:;x\; {7’\
Az = b, Tiee...dn 2> 0, tv b
where A is e % n with m < n. 4[} x-l Sl d’\‘lxh -0 :

If we have no obvious initial basic feasible solution, we can introduce artificial variable al,...,0p =

Suppose we solve an LP problem
max Z = )Ty + - -« 4 Cpy

subjeet to

0 and study the problem

maxZ =c¢yxy + - 4 cur,

subject to 1
ST+ -+ Qi Xy + a; = by, i€ R,

i Ly + -+ Bipity =bj1 3¢ R,
Ty, ooy Ty, Gy, ae 2 0

for a very lurge M > 0, and a suitable subset of R C {1,... sm}.

Example lxlaxZ =2+ 35] subject to
o1+ 22 <8, 2+ 3wy > 20, baox = 24 13 K0 va t 0Xe MY,

Then ...
X+ X1+ X =9
X B =Xatlhr =20
2(\/ X5, X.?,Ju—;.?(s— 2O
If we cannot get rid Lo the artificial variable ay,.-.,apal the end of the process, we have an

infeasible problem!



An example of using big M mecthod for a minimization problems
Consider min Z = =3x) + x5 + 13 + Mg + Mar

subject to

€] — 2ra 4+ a3 < 11,

Adding slack variable x4 > 0, excess variable x5 > 0 and artificial variables zg, 7 > 0, we get an

—dr) + o+ 2y > 3,

initial basic feasible solution.

2ry — oy = -1,

xry, e, oy 2 0.

Cp{ B | (=) (+Dzz (+)zxy (+0)xy (+0)z5 (+M)zg (+M)z; | constraints
0 | m 1 -2 1 1 0 0 0 11
M |z -4 1 2 0 -1 1 0 3
M | 2 -2 0 1* 0 0 0 1 1
C | -3+6M 1I-M 1-3M 0 M 0 0 Z = 4M
Cp| B [ (=8)x1 (+Dx2 (+Dxy (+0)x1 (+0)rg (+M)zg (+M)z;7 | constraints
0 | = 3 -2 0 1 0 0 -1 10
M |z 0 1* 0 0 -1 1 -2 1
1 |z -2 0 1 0 0 0 1 1
C | -1 1I-M 0 0 M 0 M1 |Z=AM+1
Cu | B | (-3)r, (+l)aw (+l)as (+0)zq (+0)z; (+M)zg (+M)z7 | constraints
0 | my 3* 0 0 1 -2 2 -5 12
| e 0 1 0 0 -1 1 -2 1
1 |3 -2 0 1 0 0 0 1 1
C -1 0 0 0 1 M-1 M+1 £=2
Cop | B | (=3)r (+l)xs (+D)xy (+0)74 (+0)x5 (+M)rg (+M)z7 | constraints
3 o | 1 0 0 173 2/3 373 5/3 3
1 | i 0 1 0 0 -1 1 -2 1
1 [zl o0 0 1 2/3  -4/3 4/3 -7/3 9
Cli o 0 0 /3 1/3  M-1)3 M2/3 | Z=-2




§4.13 The two-phasc method

e > = Yot 3

Phase one
Cp | B|(0)x (0)z2 (0)zy (+0)zy (+0)xs (+1)zg (41)x7 | constraints
0 |y 1 -2 1 1 0 0 ¢ 11
1 | x| -4 1 2 0 -1 1 0 3
L | a7 -2 0 1* 0 0 0 1 1
C 6 -1 -3 ] 1 0 0 Z =4
Cp | Bl 0z (+0)x2 (+0)r3 (+0)x; (+0)rs5 (+1)xzg (+1)x7 | constraints
0 | 3 -2 0 1 0 0 -1 10
1 | mg 0 1% 0 0 -1 1 -2 1
0 | g -2 0 1 0 0 0 1 1
c -1 -1 0 0 1 0 3 Z=1
Cp| B|(0)z; (+0)x2 (+0)x3 (+0)zy (+0)xs (+1)xg (+1)z7 | constraints
0 | x4 3 0 0] 1 -2 2 -5 12
0 | x 0 1 0 ] -1 1 -2 1
0 |z -2 0 1 0 ] 0 1 1
c -1 0] 0 0 1 1 1 Z=10
Now move to phase two.
Cp| B|(-3x (+1)as (+l)xy (+0)ry (+0)x5 | constraints
0 |z 3* 0 0 1 -3 12
1 | o 0 1 0 0 -1 1
1 | =y -2 0 1 0 0 1
C -1 0 0 0 1 Z=2
Cp| B | (-3)rm (+Dza (+ay (+0)x; (+0)x5 | constraints
3 = | 1 0 0 173 -2/3 4
1 |z 0 i 0 0 -1 1
1 {z3| O 0 1 2/3  -4/3 9
cl| o 0 0 1/3 /3 | Z=-2
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e One con use build in Matlab commandls,

o There are other methods for qolvmg LP: Karmarkm s method, interior pomt. method. QM‘

Ye.- A
Sce hitps:/ /www.nathworks.cowlelp /optim/ug/linprog.hitml L7 Yy o Kny Ku 20

To solve minimization problem
min Z=c¢_1x_1+ ... +c_nx.n
Subject to Ax \leq b, Adx = bb, L \leq x \leq U.
Input ¢ = [c_1, ...., c_n), A, b, AA, bb, L, U.
If no inequality constraints, set A = [1, b = [].

Use one of the following commands

x = linprog(c,4,b)
x = linprog(c,A,b,AA,bb)
x = linprog(c,A,b,AA,bb,L,U)

[x,fvall = linprog(___)

Theory behind the simplex algorithm
Theorem 1 A point in the feasible region of an LP is an extreme point if and only if it is a
busic feasible solution of the LP,

Proof. Every point in R"™ is uniquely determine by m linearly independent equation in R™. O

Theorem 2 Suppose an LP in standard form have basic feasible solutions v,...,v.. Then
every point in the feasible region has the form v = vy + Ej’l p;v;, where vy is the zero vector or a
veclor in the unbounded direction, py, ..., p; are non-negalive nwmnbers summing up o one.

Proof. By the theory of convex analysis. a

Theorem 3 If an maximization LI® has an optimal solution, then it has an optimal basic
feasible solution.

Proof. If an LP has an optimal solution Z* with objective function max 2 = ¢ -2 = eyry +

-+ eyiy, then for any unbounded direction vy, we have ¢+ My < Z*. So, ¢-vg = 0. So, if

b=ty + ZL, pjv; attains the maximum, we have

k

k k
e.(u + ijvj) =c-: (ijv_;-} = ZPJC'Uj <max{c-v;: 1= j=<k} 0
= = =



