Example (of unbounded solution) If in a maximization problem involving $x_1, \ldots, x_5 \ge 0$ satisfying 2 equations.

Suppose $(x_1, x_2, x_3, x_4, x_5) = (0, 0, 0, 8, 7)$ is a basic feasible solution. If $\tilde{C}_1 = 1 > 0$ and the reduced system is

$$-x_1 + x_4 = 8, \qquad -3x_1 + x_5 = 7.$$

Then we can increase x_1 indefinitely, and conclude that we have an unbounded solution.

Example of unbounded solution arising in the iteration process

	C_B	B	$(2)x_1$	$(+3)x_2$	$(+0)x_3$	$(+0)x_4$	constraints
ı	0	x_3	1	-1	1	0	2
	0	x_4	-3	1	0	1	4
		Č	2	3	0	0	Z = 0

C_B	B	$(2)x_1$	$(+3)x_2$	$(+0)x_3$	$(+0)x_4$	constraints
0	x_3	-2	0	1	1	6
3	x_2	3	1	0	1	4
	Č	11	0	0	-3	Z = 12

Special cases one may encounter

Alternate Optima

Suppose the iteration leads to:

C_B	В	$(+3)x_1$	$(+2)x_2$	$(+0)x_3$	$(+0)x_4$	$(+0)x_5$	constraints
0	x_3	0	0	1	-1/5	8/5	6
2	x_2	0	1	0	1/5	-3/5	1
3	x_1	1	0	0	1/5	2/5	4
	C	0	0	0	-1	0	(Z = 14)

The non-basic variable x_5 has zero relative profit. We can use it to replace x_3 and get

C_B	B	$(+3)x_1$	$(+2)x_2$	$(+0)x_3$	$(+0)x_4$	$(+0)x_5$	constraints
0	x_5	0	0	5/8	-1/8	1	15/4
2	x_2	0	1	3/8	1/8	0	13/4
_3	x_1	1	0	-1/4	1/4	0	5/2
	Č	0	0	0	-1	0	Z = 14

Unique optimum

 $\chi = (\chi_1, \chi_2, \chi_3, \chi_4, \chi_5) = (4,1,6,0,0), f = (4,1,4,0,0), f = (4,1,4$

If all the non-basic variables has negative relative-profit, then the problem has a unique solution

For $t \in [0,1]$ $t \times t (1-t)$ is an optimal solution.

Ties in the selection of non-basic variable

Suppose \tilde{c}_i is maximum and in the selection of basic variable x_j to be replaced, there are ties in the minimum ratio \tilde{b}_j/\tilde{a}_j , then we can choose any one of the x_j to be replaced.

Other degeneracy occurs when a basic variable $x_i = 0$. Then a change of basic variable may lead to no improvement even if we apply the simplex algorithm.

Example

\overline{C}_B	В	$(0)x_1$	$(+0)x_2$	$(+0)x_3$	$(+2)x_4$	$(+0)x_5$	$(+3/2)x_6$	constraints
0	x_1	1	0	0	1*	-1	0	2
0	x_2	0	1	0	2	0	1	4
0	x_3	0	0	1	1	1	1	3
	\tilde{C}	0	0	0	2	0	3/2	Z = 0

C_B	B	$(0)x_1$	$(+0)x_2$	$(+0)x_3$	$(+2)x_4$	$(+0)x_5$	$(+3/2)x_6$	constraints
2	x_4	1	0	0	1	-1	0	2
0	x_2	-2	1	0	0	2*	1	0
0	x_3	-1	0	1	0	2	1	1
	Č	-2	0	0	0	. 2	3/2	Z=4

C_B	B	$(0)x_1$	$(+0)x_2$	$(+0)x_3$	$(+2)x_4$	$(+0)x_5$	$(+3/2)x_6$	constraints
2	x_4	0	1/2	0	1	0	1/2	2
0	x_5	-1	1/2	0	0	1	1/2	0
0	x_3	1	-1	1	0	0	0	1
	\bar{C}	0	-1	0	0	2	1/2	Z=4

- Two more iterations yield $(x_1, x_4, x_6) = (1, 1, 2)$ as the optimal solution with Z = 5.
- In really bad situation, we might even have cycling issue.
- In practice, we are safe if basic feasible solutions always have positive entries (non-degenerate problems).
- As long as there is a positive \tilde{c}_i , we should try to improve the solution though it might increase the number of steps in the calculation, but it will not affect the optimal value Z.

§4.12 Finding an initial solution - Big M method, and detecting infeasible problem

Suppose we solve an LP problem

 $\max Z = c_1 x_1 + \dots + c_n x_n$ $Ax = b, \quad x_1, \dots, x_n \ge 0,$ $A_i, \chi_i \leftarrow -+ A_{i_h} \chi_h = 0$

subject to

where A is $m \times n$ with $m \leq n$.

If we have no obvious initial basic feasible solution, we can introduce artificial variable $a_1, \ldots, a_r \ge 0$ and study the problem

 $x_1,\ldots,x_n,a_1,\ldots,a_r\geq 0$

$$\max Z = c_1 x_1 + \dots + c_n x_n - M(a_1 + \dots + a_r)$$

$$a_{i1} x_1 + \dots + a_{in} x_n + a_i = b_i, \quad i \in R,$$

$$a_{i1} x_1 + \dots + a_{in} x_n = b_j, \quad i \notin R,$$

subject to

for a very large M > 0, and a suitable subset of $R \subseteq \{1, ..., m\}$.

Example
$$\max Z = 2x_1 + 3x_3$$
 subject to
$$\underbrace{x_1 + x_2 \leq 8}, \quad \underbrace{x_1 + 3x_2 \geq 20}, \quad \underbrace{x_1, x_2 \geq 0}. \qquad \text{Max} \quad \neq = 2 \times_1 + 3 \times_2 + 0 \times_3 + 0 \times_4 - \text{MX}_3$$
 Then ...
$$\times_1 + \times_2 + \times_3 \qquad = 8$$

 $X_1 + X_2 + X_3 = 8$ $X_1 + 3X_2 - X_4 + 3X_5 = 20$ $X_1, X_2, X_3, X_4, X_5 \ge 0$

If we cannot get rid to the artificial variable a_1, \ldots, a_p at the end of the process, we have an infeasible problem!

An example of using big M method for a minimization problems

Consider min $Z = -3x_1 + x_2 + x_3 + Mx_6 + Mx_7$ subject to

$$x_1 - 2x_2 + x_3 \le 11$$
, $-4x_1 + x_2 + 2x_3 \ge 3$, $2x_1 - x_3 = -1$, $x_1, x_2, x_3 \ge 0$.

Adding slack variable $x_4 \ge 0$, excess variable $x_5 \ge 0$ and artificial variables $x_6, x_7 \ge 0$, we get an initial basic feasible solution.

C_B	В	$(-3)x_1$	$(+1)x_2$	$(+1)x_3$	$(+0)x_4$	$(+0)x_5$	$(+M)x_6$	$(+M)x_7$	constraints
0	x_4	1	-2	1	1	0	()	0	11
M	x_6	-4	1	2	0	-1	1	0	3
M	x_7	-2	0	1*	0	0	0	1	1
	Č	-3+6M	1-M	1-3M	0	M	0	0	Z = 4M

C_B	В	$(-3)x_1$	$(+1)x_2$	$(+1)x_3$	$(+0)x_4$	$(+0)x_5$	$(+M)x_6$	$(+M)x_{7}$	constraints
$ 0 \rangle$	$ x_4 $	3	-2	0	1	0	0	-1	10
M	x_6	0	1*	0	0	-1	1	-2	1
1	x_3	2	0	1	0	0	0	1	1
	\bar{C}	-1	1-M	0	0	M	0	3M-1	Z = M + 1

C_B	В	$(-3)x_1$	$(+1)x_2$	$(+1)x_3$	$(+0)x_4$	$(+0)x_5$	$(+M)x_{6}$	$(+M)x_7$	constraints
0	x_4	3*	0	0	1	-2	2	-5	12
1	x_2	0	1	0	0	-1	1	-2	1
1	x_3	-2	0	1	0	0	0	1	1 1
	Ĉ	-1	0	0	0	1	M-1	M+1	Z=2

C_B	B	$(-3)x_1$	$(+1)x_2$	$(+1)x_3$	$(+0)x_4$	$(+0)x_5$	$(+M)x_6$	$(+M)x_7$	constraints
-3	x_1	1	0	0	1/3	-2/3	2/3	-5/3	4
1	x_2	0	1	0	0	-1	1	-2	1
1	x_3	0	0	1	2/3	-4/3	4/3	-7/3	9
	C	0	0	0	1/3	1/3	M-1/3	M-2/3	Z = -2

§4.13 The two-phase method

Phase one

1	C_B	B	$(0)x_1$	$(0)x_2$	$(0)x_3$	$(+0)x_4$	$(+0)x_5$	$(+1)x_6$	$(+1)x_7$	constraints
ľ	0	x_4	1	-2	1	1	0	0	0	11
	1	x_6	-4	1	2	0	-1	1	0	3
1	1	x_7	-2	0	1*	0	0	0	1	1
ĺ		\tilde{C}	6	-1	-3	0	1	0	0	Z=4

C_B	B	$(0)x_1$	$(+0)x_2$	$(+0)x_3$	$(+0)x_4$	$(+0)x_5$	$(+1)x_6$	$(+1)x_7$	constraints
0	x_4	3	-2	0	1	0	0	-1	10
1	x_6	0	1*	0	0	-1	1	-2	1
0	x_3	-2	0	1	0	0	0	1	1
	\check{C}	-1	-1	0	0	1	0	3	Z = 1

[$\overline{C_B}$	B	$(0)x_1$	$(+0)x_2$	$(+0)x_3$	$(+0)x_4$	$(+0)x_5$	$(+1)x_6$	$(+1)x_7$	constraints
ľ	0	x_4	3	0	0	1	-2	2	-5	12
	0	x_2	0	1	0	0	-1	1	-2	1
	0	x_3	-2	0	1	0	0	0	1	1
Ī		Ĉ	-1	0	0	0	1	1	1	Z = 0

Now move to phase two.

C_B	В	$(-3)x_1$	$(+1)x_2$	$(+1)x_3$	$(+0)x_4$	$(+0)x_5$	constraints
0	x_4	3*	0	0	1	-2	12
1	x_2	0	1	0	0	-1	1
1	x_3	-2	0	1	0	0	1
	Ĉ	-1	0	0	0	1	Z=2

	C_B	В	$(-3)x_1$	$(+1)x_2$	$(+1)x_3$	$(+0)x_4$	$(+0)x_5$	constraints
Ī	-3	x_1	1	0	0	1/3	-2/3	4
	1	x_2	0	1	0	0	-1	1
ļ	1	x_3	0	0	1	2/3	-4/3	9
-	-	Č	0	0	0	1/3	1/3	Z = -2

YMAX
$$\xi = C_1 \times t - t C_n \times x_n \times (x_n^{\dagger} - x_n^{\dagger})$$

$$G_{11} \times t + - t G_{1n} \times x_n = b_1$$

$$G_{m1} \times t + - t G_{mn} \times x_n = b_{mn}$$

Remarks

- We may also consider variables without sign restriction. See §4.14.
- There are other methods for solving LP: Karmarkar's method, interior point method.

For example, see §4.15 and wikipedia.

• One can use build in Matlab commands.

See https://www.mathworks.com/help/optim/ug/limprog.html

Xu= Xn - Xn X... Xn-1 . Xn+, Xn >0

To solve minimization problem

$$\min Z = c_1 x_1 + ... + c_n x_n$$

Subject to $Ax \leq b$, AAx = bb, $L \leq x \leq U$.

Input $c = [c_1, ..., c_n], A, b, AA, bb, L, U.$

If no inequality constraints, set A = [], b = [].

Use one of the following commands

x = linprog(c,A,b)

x = linprog(c, A, b, AA, bb)

x = linprog(c, A, b, AA, bb, L, U)

[x,fval] = linprog(___)

Theory behind the simplex algorithm

Theorem 1 A point in the feasible region of an LP is an extreme point if and only if it is a basic feasible solution of the LP.

Proof. Every point in \mathbb{R}^m is uniquely determine by m linearly independent equation in \mathbb{R}^m . \square

Theorem 2 Suppose an LP in standard form have basic feasible solutions v_1, \ldots, v_k . Then every point in the feasible region has the form $v = v_0 + \sum_{j=1}^k p_j v_j$, where v_0 is the zero vector or a vector in the unbounded direction, p_1, \ldots, p_k are non-negative numbers summing up to one.

Proof. By the theory of convex analysis. \Box

Theorem 3 If an maximization LP has an optimal solution, then it has an optimal basic feasible solution.

Proof. If an LP has an optimal solution Z^* with objective function $\max Z = c \cdot x = c_1 x_1 + \cdots + c_n x_n$, then for any unbounded direction v_0 , we have $c \cdot M v_0 \leq Z^*$. So, $c \cdot v_0 = 0$. So, if $v = v_0 + \sum_{j=1}^k p_j v_j$ attains the maximum, we have

$$c.(v_0 + \sum_{j=1}^k p_j v_j) = c \cdot (\sum_{j=1}^k p_j v_j) = \sum_{j=1}^k p_j c \cdot v_j \le \max\{c \cdot v_j : 1 \le j \le k\}.$$