Finding the dual LP not in standard primal form

First set
$$\underbrace{x_2 = x_2^+ - x_2^-}$$
 with $x_2^+, x_2^- \ge 0$, and convert the problem to $\max Z = 2x_1 + \underbrace{x_2^+ - x_2^-}$

subject to
$$x_1 + x_2^+ - x_2^- \le 2$$

$$-x_1 - x_2^+ + x_2^- \le -2$$

$$-2x_1 + x_2^+ - x_2^- \le 3$$

$$x_1 - x_2^+ + x_2^- \le 1$$

$$x_1, x_2^+, x_2^- \ge 0.$$

The dual LP becomes

subject to
$$\begin{aligned} \min W &= 2y_1' - 2y_1'' + 3y_2 + 1y_3 \\ y_1' - y_1'' - 2y_2 + y_3 &\geq 2 \\ \hline (y_1' - y_1'') + y_2 - y_3 &\geq 1 \\ \hline -y_1' + y_2'' - y_2 + y_3 &\geq -1 \\ \hline (y_1', y_2'', y_2, y_3 &\geq 0. \end{aligned}$$

We set $y_1 = y_1' - y_1''$ and get

The dual LP becomes:

Setting
$$y_1 = y_1' - y_1''$$
 and $\hat{y}_2 = -y_2$, we get

subject to
$$\begin{array}{c}
\min y_{1} + 3\hat{y}_{2} + y_{3} \\
y_{1} + 2\hat{y}_{2} + y_{3} \\
y_{1} - \hat{y}_{2} - y_{3} \\
y_{1} \text{ urs, } \hat{y}_{2} \leq 0, y_{3} \geq 0.
\end{array}$$

Dual LP

$$\max Z = (c_1, \dots, c_n) \cdot (x_1, \dots, x_n) \quad \text{subject to } Ax \leq (b_1, \dots, b_m)^T, \quad x_1, \dots, x_n \geq 0,$$
where $x = (x_1, \dots, x_n)^T$ and $A = (a_{ij})$ is $m \times n$.

where
$$x = (x_1, \ldots, x_n)^T$$
 and $A = (a_{ij})$ is $m \times n$

Then the dual LP is defined as

m (aij) (xi) E /bi

$$\min W = (b_1, \dots, b_m) \cdot (y_1, \dots, y_m)$$
 subject to $A^T y \ge (c_1, \dots, c_n)^T$, $y_1, \dots, y_m \ge 0$,

where
$$y = (y_1, \dots, y_m)^T$$
.

Example (Dekota problem, p. 296) Primal problem

$$\max Z = 60x_1 + 30x_2 + 20x_3$$

subject to:
$$8x_1 + 6x_2 + x_3 \le 48$$

$$4x_1 + 2x_2 + 1.5x_3 \le 20 \ t$$

$$2x_1 + 1.5x_2 + 0.5x_3 \le 8$$

$$x_1, x_2, x_3 \ge 0$$

(Lumber constraint)

(Finishing constraint)

(Capentry constriant)

Dual problem.

$$\min W = 48y_1 + 20y_2 + 8y_3$$

$$8y_1 + 4y_2 + 2y_3 \ge 60$$
$$6y_1 + 2y_2 + 1.5y_3 \ge 30$$

$$y_1 + 1.5y_2 + 0.5y_3 \ge 20$$

$$y_1, y_2, y_3 \ge 0$$

Example (Diet problem)

$$\min W = 50y_1 + 20y_2 + 30y_3 + 80y_4$$

subject to:
$$400y_1 + 200y_2 + 150y_3 + 500y_4 \ge 500$$
 (Calorie constraint)

$$3y_1 + 2y_2 \ge 6$$
 (Chocolate constraint)

$$2y_1 + 2y_2 + 4y_3 + 4y_4 \ge 10$$
 (Sugar constraint)

$$2y_1 + 4y_2 + y_3 + 5y_4 \ge 8$$
 (Fat constraint)

$$y_1, y_2, y_3, y_4 \ge 0.$$

The Primal problem:

$$\max Z = 500x_1 + 6x_2 + 10x_3 + 8x_4$$

subject to:
$$400x_1 + 3x_2 + 2x_3 + 2x_4 \le 50$$

$$200x_1 + 2x_2 + 2x_3 + 4x_4 \le 20$$

$$150x_1 + 4x_3 + x_4 \le 30$$

$$500x_1 + 4x_3 + 5x_4 \le 80$$

$$x_1, x_2, x_3, x_4 \geq 0.$$

General rules for converting an LP to its dual.

Primal (Maximize)	Dual (Minimize)
$\max Z = c^T x$	$\min W = b^T y$
A: coefficient matrix	A^T : coefficient matrix
b: Right-hand-side vector	Cost vector
c: Price vector	Right-hand-side vector
ith constraint is an equation	The dual variable y_i has urs
i th constraint is \leq type	The dual variable $y_i \geq 0$
i th constraint is \geq type	The dual variable $y_i \leq 0$
x_j has urs	jth dual constraint is an equation
$x_j \geq 0$	j th dual constraint is \geq type
$x_j \leq 0$	j th dual constraint is \leq type

Example 1 Primal LP

subject to
$$\begin{aligned} \max Z &= x_1 + 4x_2 + 3x_3 \\ 2x_1 + 3x_2 - 5x_3 &\leq 2 \\ 3x_1 - x_2 + 6x_3 &\geq 1 \\ x_1 + x_2 + x_3 &= 4 \\ x_1 &\geq 0, \quad x_2 \leq 0, \quad x_3 \text{ urs.} \end{aligned}$$

Duel LP

Example 2 Primal LP

$$\min Z = 2x_1 + x_2 - x_3$$
 subject to
$$\begin{aligned} x_1 + x_2 - x_3 &= 1 \\ x_1 - x_2 + x_3 &\geq 2 \\ x_2 + x_3 &\leq 3 \\ x_1 &\geq 0, \ x_2 &\leq 0, \ x_3 \text{ urs.} \end{aligned}$$

Duel LP

$$\max W = y_1 + 2y_2 + 3y_3$$
 subject to
$$\begin{aligned} y_1 + y_2 &\leq 2 \\ 3y_1 - y_2 + y_3 &\geq 1 \\ -y_1 + y_2 + y_3 &= -1 \\ y_1 \text{ urs, } y_2 &\geq 0, \ y_3 \leq 0. \end{aligned}$$

Remark The dual of the dual of an LP is the original problem.

Theorem Consider the standard primal and dual LP

$$\max Z = c^T x$$
, $Ax \le b$, $x \ge 0$ and $\min W = b^T y$, $A^T y \ge c$, $y \le 0$

with $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$. If $x_0 \in \mathbb{R}^n$, $y_0 \in \mathbb{R}^m$ are vectors in the feasible regions so that $Z^* = c^T x_0$ and $W^* = b^T y_0$ are feasible solutions of the two problems, then $Z^* \leq W^*$.

As a result, if $Z^* = W^*$, then it is the common optimal solutions for the primal and dual LP's. Furthermore, two column vectors $x_0 \in \mathbb{R}^n$, $y_0 \in \mathbb{R}^m$ in the feasible regions will give rise to the optimal solution for the two problems if and only if

$$(y_0^T A - c^T)x_0 + y_0^T (b - Ax_0) = 0,$$
 i.e., $(y_0^T A - c^T)x_0 = y_0^T (b - Ax_0) = 0.$

Proof. Let x_0 and y_0 be the vectors in the feasible regions giving rise to the Z^* and W^* . Then

$$Z^* = c^T x_0 \le (A^T y_0)^T x_0 = y_0^T A x_0 \le y_0^T b = b^T y_0 = W^*. \tag{1}$$

The second assertion is clear.

Finally, by (1), the equality
$$Z^* = W^*$$
 holds if and only if $Z^* = c^T x = y_0^T A x_0 = y_0^T b = W^*$, i.e., $(y_0^T A - c^T) x_0 = y_0^T (b - A x_0) = 0$. The last assertion follows.

The last condition is known as the complementary slackness principle for LP.

At the optimal solution: if $b - Ax_0$ has positive entries, i.e., the non-binding constraints, then the entries in y_0 equal zero; if $c - A^T c$ has positive entries, then the entries in x_0 equal zero.

Conversely, if we get two feasible solutions x_0, y_0 satisfying the condition

$$(y_0^T A - c^T)x_0 = y_0^T (b - Ax_0) = 0,$$

then $y_0^T A x_0$ is the optimal value for the two LP's.

Theorem Consider the standard primal and dual problem. Exactly one of the following holds.

- (a) If both problem are feasible, then both of them have optimal solutions having the same value.
- (b) If one problem has unbounded solution, then the other problem has no feasible solution.
- (c) Both problem are infeasible.

Proof. Proof of (a) is tricky. Proof of (b) is easy. If (a) and (b) do not hold, then (c) holds. \Box

Note If P, D stand for the primal LP and dual LP.

- (1) P has finite optimal if and only if D has finite optimal.
- (2) if P is unbounded then D is infeasible;
- (3) if D is unbounded then P is infeasible;
- (4) if P is infeasible then D is unbounded or infeasible;
- (5) if D is infeasible then P is unbounded or infeasible.

