Three ways of finding basic feasible solutions

1. Northwest corner method.
From the (1,1) entry, try to fulfill the row or column sum constraint in each step.

Example: (81, 52, 83) = (5, 1,3), (dy,d2, dg,dq) = (2,4,2,1).
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2. Minimum cost method.

Use the cheapest cost in each step to satisfy the row or column in each step.

Example: (s1,s0,83) = (5,10, 15), (dy,da, d3,ds) = (12,8,4,6), C = (2
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3. Vogel’s method. Chooselcheap costs and avoid future heavy penalty.

Compute row/column penalties (difference of the two minimum costs in each row/column).

Select basic variable at the row or column with maximum penalty.
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7.3 The transportation simplex method

1..Set up the balanced transportation problem with m supply points and n demand points to

minimize Z = 3, ; ¢;5i;.

2{ Find an initial basic feasible solution. 1/

3. Find (uy,...,%m,v1,...,0,) with 2; = 0 and u; + v; = ¢;; for those c;; corresponding to the -
basic variables z;;. Min % :LCFJ N )\
Note that (uy,...,um,v,..., v@) is a “proposed” solution of the dual LP problem: ,q X= 1S
Ty <,
m n u n 3.\_,\
max W = Zs,-u,- + Zdjvj Subject to A* [v] < :1, ‘%‘
i=1 7=1 Cmn d "
w=[uy,...,uml’, v=[v1,...,v,]" have cntries with unrestricted signs.
4. If i + v < ¢35 for all (4, 5) pairs, then (w1,...,4m,v1,...,v,) is dual feasible. So, we get an

optimal solution.

5. Otherwise, choose the (i,7) pair such thatfu; + v; — ¢i; > Ofis maximum to be the entering

variable, —

6. Find a (the) loop using x, in the basic feasible solutions together with Tij, and use x;; as
entry 0 in the loop.

7. Find the maximum d > 0 to add to the the even entries x4 in the loop, and subtract & from
the odd entries in the loop.

{An odd entries z, in the loop that is reduced to 0 after the procedure is the basic variable
changing into a non-basic variable (as z;; becomes a basic variable).]

8. Go back to Step 3 until an optimal solution (both primal and dual feasible) is found.

Remark For the maximization problem max Z = 3=, . ¢;;zij, the dual problem is:

m n n
. a t{u .
min W = Zs,-u,- + Zdju_,- Subject to 4 [v] 2 IR
i=1 7=1 Crn
u = [u1,...,uml v =[t1,...,vs)" have entries with unrestricted signs.
So, we modify (4}, (5) to:
4’ The current solution is optimal if the proposed solution (u1,...,%m,v1,...,v;) of the dual

problem satisfies u; + v; > ¢;; for all (4, 7).

5’ Otherwise, find the (4, 7) pair such that e;; — (u; + v;) > 0 is maximum to be the entering
variable.



Example Solve the Powerco problem.

C1 C2 C3 C4 | Supply
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