Three ways of finding basic feasible solutions

1. Northwest corner method.

From the (1,1) entry, try to fulfill the row or column sum constraint in each step.

Example: $(s_1, s_2, s_3) = (5, 1, 3), (d_1, d_2, d_3, d_4) = (2, 4, 2, 1).$

2. Minimum cost method.

Use the cheapest cost in each step to satisfy the row or column in each step.

Example: $(s_1, s_2, s_3) = (5, 10, 15), (d_1, d_2, d_3, d_4) = (12, 8, 4, 6), C = \begin{pmatrix} 2 & 3 & 5 & 6 \\ 2 & 1 & 3 & 5 \\ 3 & 8 & 4 & 6 \end{pmatrix}.$

3. Vogel's method. Choose cheap costs and avoid future heavy penalty.

Compute row/column penalties (difference of the two minimum costs in each row/column).

Select basic variable at the row or column with maximum penalty.

7.3 The transportation simplex method

1. Set up the balanced transportation problem with m supply points and n demand points to

minimize
$$Z = \sum_{i,j} c_{ij} x_{ij}$$
.

2 Find an initial basic feasible solution.

3. Find $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ with $u_1 = 0$ and $u_i + v_j = c_{ij}$ for those c_{ij} corresponding to the basic variables x_{ij} .

Note that $(u_1, \ldots, u_m, v_1, \ldots, v_m)$ is a "proposed" solution of the dual LP problem:

$$\max W = \sum_{i=1}^{m} s_i u_i + \sum_{j=1}^{n} d_j v_j \qquad \text{Subject to } A^t \begin{bmatrix} u \\ v \end{bmatrix} \leq \begin{bmatrix} c_{11} \\ \vdots \\ c_{mn} \end{bmatrix},$$

 $u = [u_1, \ldots, u_m]^t$, $v = [v_1, \ldots, v_n]^t$ have entries with unrestricted signs.

- 4. If $u_i + v_j \le c_{ij}$ for all (i, j) pairs, then $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ is dual feasible. So, we get an optimal solution.
- 5. Otherwise, choose the (i, j) pair such that $u_i + v_j c_{ij} > 0$ is maximum to be the entering variable.
- 6. Find a (the) loop using x_{rs} in the basic feasible solutions together with x_{ij} , and use x_{ij} as entry 0 in the loop.
- 7. Find the maximum $\delta > 0$ to add to the the even entries x_{rs} in the loop, and subtract δ from the odd entries in the loop.

[An odd entries x_{rs} in the loop that is reduced to 0 after the procedure is the basic variable changing into a non-basic variable (as x_{ij} becomes a basic variable).]

8. Go back to Step 3 until an optimal solution (both primal and dual feasible) is found.

Remark For the maximization problem $\max Z = \sum_{i,j} c_{ij} x_{ij}$, the dual problem is:

$$\min W = \sum_{i=1}^m s_i u_i + \sum_{j=1}^n d_j v_j \qquad \text{Subject to } A^t \begin{bmatrix} u \\ v \end{bmatrix} \geq \begin{bmatrix} c_{11} \\ \vdots \\ c_{mn} \end{bmatrix},$$

 $u = [u_1, \ldots, u_m]^t$, $v = [v_1, \ldots, v_n]^t$ have entries with unrestricted signs.

So, we modify (4), (5) to:

- 4' The current solution is optimal if the proposed solution $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ of the dual problem satisfies $u_i + v_j \ge c_{ij}$ for all (i, j).
- 5' Otherwise, find the (i, j) pair such that $c_{ij} (u_i + v_j) > 0$ is maximum to be the entering variable.

Example Solve the Powerco problem.

	C1	C2	C3	C4	Supply
P1	\$8	\$6	\$10	\$9	≤ 3 5
P2	\$9	\$12	\$13	\$7	≤ 50
P3	\$14	\$9	\$16	\$5	≤ 40
Demand	≥ 45	≥ 20	≥ 30	≥ 30	

		City1	City2	City3	City4	Supply
0=41	Plant1 -	8_	5 6	ر 10	-8 9	
777.	(35)-4	(2)		12	35
1 = U2	Plant2	0 9	0 12	0 13	-5 7	
,	(1072	(20)	12(05)		50
1 - 11	Plant3	-2 (14	6 9	0 16	0 \5	_
$4 = u_3$			-	I nota	30-1	40
	Demand	45	20	30	30	

$u_1 =$	$v_1 =$	
$u_2 =$	$v_2 =$	$\Delta = 20$
$u_3 =$	$v_3 =$	
	$v_4 =$	

	City1	City2	City3	City4	Supply
Plant1	8	6	10	9	
	(15)			(20)	35
Plant2	9	12	13	7	
	30	(50)	# 1 k-1		50
Plant3	14	9	16	5	
		(30)	(10)	40
Demand	45	20	30	30	

$$u_1=$$
 $v_1=$ $u_2=$ $v_2=$ $\Delta=$ $u_3=$ $v_3=$

	City1	City2	City3	City4	Supply
Plant1	8	6	10	9	
					35
Plant2	9	12	13	7	
					50
Plant3	14	9	16	5	
					40
Demand	45	20	30	30	

$$u_1 = v_1 =$$
 $u_2 = v_2 =$
 $u_3 = v_3 =$
 $v_4 =$

	City1	City2	City3	City4	Supply
Plant1	8	6	10	9	
					35
Plant2	9	12	13	7	
					50
Plant3	14	9	16	5	
					40_
Demand	45	20	30	30	

$$u_1 = v_1 =$$
 $u_2 = v_2 =$
 $u_3 = v_3 =$
 $v_4 =$