6 (a) Use Hungarian Method
for the may problem
(Change all # to Hleir)
reprine.

(b) Use the transportation table set up.

Argue the mortial bobs consists

of o, 1 as the Xij values.

In each iteration, a car be....

Section 7.6

1. Se Hojust the supply demand Values, add the dumy known

* Where sure the optimal solution of your problem will give the nin cost for the original problem.

A special case - Matching problem. Try to match n boys b_1, \ldots, b_n with n girls g_1, \ldots, g_n with $c_{i,j} = 1$ if b_i know g_j . Set a source vertex so and a sink vertex s_i such that capacity constraint from so to b_i equals 1, and the capacity constraint from g_i to s_i equals 1, for $i = 1, \ldots, n$.

Example

	Compatibilities for Matching						
		Leni Anderson	Mary! Streep	Katharina Hephern	Linds Evens	Victoria Principal	
	Kevin Custner	_	С	_	_	_	
	Burt Reynolds Tom Seileck	C C			_	_	
	Michael Jackson	c	C	200	-	C	
	Tom Cruise			С	С	С	
FIGUR Notwo Matchi	rk for	KC KC TS	1/1		KH I	S	= {6), (KO), (BR) (TS), (LA) (M3) } = V-S
		KIS	=(2	4 =	- C((B), (m)) + (SO,(TO) +
				85	C((LA) (6	((S),(EM),+(())

Hall's Theorem There is a complete matching if and only if every group of k boys know at least k girls for $k=1,\ldots,n$. (x-loop) However condition

Theorem Given a capacitated network with source vertex so and sink vertex si. Then there is a flow with value x_0 if and only if

$$\sum_{i,j \in S \times \overline{S}} c_{ij} - \sum_{i,j \in \overline{S} \times S} c_{ij} \ge x_0.$$

Remark We can always set up the maximum flow problem as a transportation problem:

Ford-Fulkerson Algorithm

Consider a capacitated network with source vertex so and sink vertex si. Partition $V = S \cup \overline{S}$ with $so \in S, si \in \overline{S}$. Define the cut associated with (S, \overline{S}) as $K(S, \overline{S}) = \sum_{(i,j) \in (S \times \overline{S})} c_{ij}$. Then maximum flow in the network equals the minimum cut.

- 1. Set initial flow to be 0.
- 2. Find a chain from so to si consisting of non-saturated forward arcs c_{ij} f_{ij} > 0, and backward arcs with non-zero flows f_{rs}; increase the flow by the minimum of the values c_{ij} f_{ij} and f_{rs}. This can be done by labeling the vertices starting from so; after adding a new round of newly labeled vertices, move on to the next round by labeling those vertices connected with those labeled in the last round by forward non-saturated forward arcs or and backward arcs with positive flow until we reach si, or find it impossible.
- 3. If no such chain exists, then we have an optimal flow. (Letting S be the vertices reachable from so with a positive chain. Then $K(S, \overline{S})$ is a minimum cut.)

Example

Solution The appropriate network is given in Figure 7. Here the capacity of arc (i, j) is the maximum number of daily flights between city i and city j. The optimal solution to this maximum flow problem is $z = x_0 = 3$, $x_{J,S} = 3$, $x_{S,L} = 1$, $x_{S,D,e} = 2$, $x_{L,D} = 1$, $x_{De,D} = 2$. Thus, Fly-by-Night can send three flights daily connecting Juneau and Dallas. One flight connects via Juneau-Seattle-L.A.-Dallas, and two flights connect via Juneau-Seattle-Denver-Dallas.

Additional Examples and Algorithms

Example 1. Shortest Path

- $0. \quad [0^*,3,7,4,\infty,\infty]$
- 1. $[0^*, \underline{3}^*, 7, 4, \infty, \infty]$
- 2. [0*, 3*, 5, 4*, ∞, 12]
- 3. [0*, 3*, 5, 4*, 7, 12]
- 4. [0*, 3*, 5*, 4*, 7*, 11]
- 5. $[0^*, 3^*, 5^*, 4^*, 7^*, 10^*]$

Example 2. A maximal flow problem

