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9.3 The Branch-and-Bound Method for Solving Pure Integer Programming Problems

e Most IPs are solved by using the technique of branch-and-bound.

¢/ Branch-and-bound IEMM the optimal solution to an IP by cfficiently enumerating the
points in a subproblems feasible region.

e Note: |If you solve the LP relaxation;(;f 2 pure IP and obtain a solution in which all variables
are integers, then the optimal solution to the LP relaxation is also the optimal solution to
the IP.

Example 9 The Telfa Corporation manufactures tahles and chairs.
'f_—‘——-—--—--_

e A table requires 1 hour of labor and 9 square board feet of wood.
- e

* A chair requires 1 hour of labor and 5 square board feet of wood.

o, i,

e Currently, 6 hours of labor and 45 square board feet of wood are available.
Palln) L

o Liach table contributes $8 to profit, and each chair contributes $5 to profit.

Formulation of the IP to maximize Telfas profit.
Let
x; = number of tables manufactured
x3 = number of chairs manufactured
Because x, and x; must be integers, Telfa wants to solve the following IP:
max = = 8x; +
\ s.t. N+ =6 Labor constraint)

O9x, + 5x; = 45 Wood constraint)
. %3 = 0; xy. X3 integer




Solving the problem

e The branch-and-bound method begins by

solving the LP relaxation of the IP.

If all the decision variables assume integer
values in the optimal solution to the LP

relaxation, then we are done.

We call the LP relaxation subproblem 1.

Here the optimal solution to the LP

relaxation is z = 165/4, ) = 15/4, 20 = 9/4

(see Figure 11).

the location of the TPs optimal solution.

2

o = 1P fensible point
& = IP relaxation’s fensible region
9 + Sxy =43
n+r=6
FIGURE 11

Feasibiie Ragion for
Tolfa Prollem

From Section 9.1, we have (optimal Z-value for IP) < (optimal Z-value for LP relaxation).
This implies that the optimal z-valuefor the IP cannot exceed 165/4.
Thus, the optimal z-value for the LP relaxation is an upper bound for Telfas profit.

We partition the feasible region for the LP relaxation in an attempt to find out more about

Choose a variable that is fractional in the optimal solution to the LP relaxation-say, z;.

Note that every point in the feasible region for the IP must have either z; < 3 or z1 > 4.

S
{Why cant a feasible solution to the IP havé}.'ii < Iy ;4'7)_’_

S e ey

r"--.____'_"_‘___.___‘________,_.—
. [With this in mind, we “branch” on the variable z; and create two additional subproblems.

— — — TR—

e The optimal solution to subpr;l;lgfn 2 did not yleld_an .all-.-integer solution.

e Choose a fractional valued variable z2 in the optimal solution to subproblem 2 and then

branch on that variable.

o Partition the feasible region for subproblem 2 into those points having z» > 2 and z2 < 1,

and get the following two subproblems:



Subproblem 2 Subproblem 1 + Constraint z; = 4. &
F-_'_-_--—-'—--
Subproblem 3 Subproblem 1 + Constraint x; < 3. (/

*3

e Neither subproblem 2 nor subproblem 3 includes

any points with .y = 15

g 8

= ARC = feasible region lor subproblemn 2
m DEFG = feasible region for subproblem 3
» = [easible point for eriginal [P

C = optimal solution for subproblem 2

¢ The optimal solution to the LP relaxation cannot

ecur when we solve subproblem 2 or subproblem 3. FIGURE 12

Feasible Region for
Subproblems 2 and 3
of Telfa Problem

® From Figure 12, every point in the feasible region
for the Telfa IP is included in the feasible

region for subproblem 2 or subproblem 3.

¢ The feasible regions for subproblems 2 and 3 . A3 o s
have no points in common.
e ——— e e

® We say that subproblems 2 and 3 were created o

- FIGURE 13
Telfa Subproblems
1 and 2 Solved

by branching on ;.

e B
» Choose any subproblem, say, subproblem 2,
\ that has not yet been solved as an LP.

¢ From Figure 12, we see that the optimal solution

to subproblem 2 is z = 41,1, = 4,z = 9/5

(point C). See Figure 13.

¢ A display of all subproblems that have

been created is called a tre
B

e
e Each subproblem is referred to as al node %:f the tree, and each hne connectirlg two nodes ot
—————

the tree is called an Erc. ]

o The constraints associated with any node of the tree are the constraints for the LP relaxation
plus the constraints associated with the arcs leading from subproblem 1 to the node.

o The label ¢ indicates the chronological order in which the subproblems are solv

chm/al Teﬂﬂl:\ 3

o
‘.'E‘m/emp'«ﬂ”

%w fo bo.cfc"\«e.c,[(
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Subproblem 4
Subproblem 1 + ConstraintsIm >dand zp > 2
= subproblem 2 4+ Constraint Eg > 2. I .

FIGURE 14

1 Faasible Regions for
Subproblem 5 " Subproblems 4 and 5
Subproblem 1 <4 Constraints z; > 4 and 2z, < 1 of Telfa Problem
= subproblem 2 + Constraint z3 < 1. s ‘:ﬂ’:’i:mﬂ.gﬁ?.f:mﬁmu:um not latersect ABC)
7 ® The feasible togions for subproblems 4 and 5 are & ,‘?::j;;;”’
A=is0)
displayed in Figure 14. i Heid, )
—_— i ‘\\ 1«5
e The set of unsolved subproblems consists of TN
0
A
subproblems 3, 4, and 5. 2k ‘\\
P—
—— \
e Choose the most recently created subproblemn, . e
A
\
i.e., subproblem 4 or subproblem 5, to solve. : LN
5 [
(This is called the LIFO, or last-in-first-out, rule.)} ? ’ ¢
vyt
Here we choose to solve subproblem 4.
et FIGURE 15 P
= . Telfa Subproblems , ., |"
» From Figure 14 we see that subproblem 4 is 1.2, and & Solved

infeasible. We place an x by subproblem 4

(sce Figure 15).

« We say that the subproblem (or node) is \{athomeol l

(No need to branch cut anymore.) See Figure 15.

» Now the only unsolved subproblems arc
|~ subprobicms
subprogram 5 by the LIFO rule.

and 5. We consider

e From Figure 14, we see that the optimal solution to subproblem 5 is point [ in Figure 14:
l‘ 2 = 365/9fz, = 40f9,m2 = 1. |

-
& Sowe choose to partition subproblem 5s feasible region by branching on the fractional-valued.

variable x; two new subproblems

_—

11



5 FIGURE 16

Subproblem 6{Subproblem 5 4 Constraint Feasible Regions for
Tf Subpreblems 6 and 7
Subproblem 7|Subproblem 5 § Constraint ; of Tetfa Problam

AHME = feasible regicon tor subpeoblem 5
A = (easible segion for subpeoblem 6
BH = leasible neghon for subproblem 7

¢ Subproblems 6 and 7 include all integer points that  °T

—

were included in the feasible region for subproblem 5.

e No point having ) = @92&11 be in the feasible ]
— < Y
region for subproblem 6 or subproblem 7. L N fomd L
e The optimal solution to subproblem 5 will not 1 L i
b 7 blem 6
recur when we solve subproblems 6 and 7. g I Ay .,
: ] 2 3 4 3 & !
o Qur tree now looks as shown in Figure 17.
FIGURE 17
- Tolfa Subproblems

1,2 & and 5 Selved

¢ Subproblems 3, 6, and 7 are now unsolved.\B

e The LIFO rule implies that we next solve

subproblem 6 or subproblem 7. We solve subproblem 7.

—

i

e From Figure 16, we see that the optimal solution

L to subproblem 7 is point H : z = 37,21 = 4,22 = 1.

SR —
"o Both x; and z7 assume integer values,

5o this solution is feasible for the original 1P,
g et C it
¢ We now know that subproblemn 7 yields a

e We also know that subproblem 7 cannot yield a

feasible integer solution with z = 37. FIGURE 18
Brench-snd-Bound Tree

Aftar Fiva Subprablems "'

feasible integer solution having z = 37.

¢ Thus, further branching on subproblem 7 will
yield no new information about the optimal solution

to the IP, and subproblem has been fathomed.

e The tree to date is pictured in Figure 18.

12



¢ A solution obtained by solving a subproblem in which

FiGURE 19 i
all variables have integer values is a candidate solution. Srsh-u-Bondbes ..,
— —== Mtor §ix Subproblems

e Because the__cEdidate solution may be optimal) we must

TR —

keep a candidate solution until a better feasible solution

to the IP (if any cxists} is found.

—

e We have a feasible solution to the original IP with z = 37, pm

so the optimal z-value for the IP is 37.

¢ Thus, the z-value for the candidate solution is

a lower bound on the optimal z-value for the original IP.

e We note this by placing the notation LB is 37 in

the box corresponding to the next solved subproblem

. FIGURE 20
(sce Figure 19). Finl Branch-end-Bound ¢ =0
—_— Trea for Talla Problem

¢ The only remaining unsolved subproblems are ¢ and 3.

¢ Following the |[LIFO r%ext solve subproblem 6.

e From Figure 16, we find that the optimal solution

— —_— A
to subproblem 6 is point Af z = 4% 5,:::,&': 0.
e e — :

e All decision variables have integer values, so

this is a candidate solution.

e lts z-value of 40 is largertlm.n____ineﬂa.jﬂ =

i s
of the best previous candidate (candidate 7 with z = 37).
@ s o=

o Thus, subproblem 7 cannot yicld the optimal solution of the IP {we denote this [act by placing
an x by subprblem 7). We also upda LB to 40. (See Figure 20).
Sl

¢/ Subproblemn 3 is the only remaining unsolved problem.
pulcr s i

T —
e From Figure 12, the optimal solution to subproblem 3 is pointi F : z ={39,fr] = 20 = 3.

¢ Subproblem 3 cannot yield a z-value exceeding the current lower bound 8f 40, so it cannot
yicld the optimal solution to the original IP.

o Therefore, we place an x by it in Figure 20. From Figure 20, there are no remaining unsolved
subproblems, and that only subproblem 6 can yield the optimal solution to the IP.

¢ Thus, the optimal solution to the IP is for Telfa to manufacture 5 tables and 0 chairs.

¢ This solution will contribute $40 to profits.
1-.._...—-—'—'_"—_‘—'——.—._‘_____'________;

13



* In using the branch-and-bound method to solve the Telfa problem, we have implicitlyenumer-

ated all points 1n the TF5 e Tegion.———
— T

e Eventually, all such points (except for the optimal solution) are climinated from consideration,
- _-_‘___‘_"‘—-—_
<and the branch-and-bound procedure is complete.

———

e To show that the branch-and-bound procedure actually does consider all points in the IPs
feasible region, we examine several possible solutions to the Telfa problem and show how the

procedure found these points to be nonoptimal.
.

e For example, how do we know that z; = 2,22 = 3 is not optimal?
—— e e e e

oint is in the feasible region for subproblem 3, and we know that all points in the
feasible region for subproblem 3 have z = 39.

e

e Thus, our analysis of subproblem 3 shows that x, = 2,22 = 3 cannot beat z = 40 and cannot
be optimal.

~—="""e- This p

o As another example, why isnt 2 4,00 =2 optilglz__

e Following the branches of the tree, we find that z; = 4,12 = 2 is associated with subproblem

4. o S SR

———
—

» Because no point associated with subproblem 4 is feasible, x; = 4,23 = 2 must fail to satisfy

the constraints for the original IP and thus connot be optimal for the Telfa problem.

* In a similar fashion, the branch-and-bound analysis has eliminated all points z;, z; (except
for the optimal solution} from consideration.

e For the simple Telfa problem, the use of the branch-and-bound method may seem like using
a cannon to kill a fly. 5

e But for an IP in which the feasible region contains a&rge number of integer Eoint’.g, the

procedure can be very efficient for eliminating nonoptimal points from consideration.

¢ For example, supposc we arc applying the branch-and-bound method and our current LB is
42.

¢ Suppose we solve a subproblem that contains 1 million feasible points for the IP.

. If the optimal solution to this subproblem has z = 42, then we have eliminated 1 million
nonoptimal points by solving a single LP!

¢ The key aspects of the branch-and-bound method for solving pure 1Ps ( mixed 1Ps are con-

sidered in the next section) may be summarized as follows:

- — = I —

14



Step 1 If it is unnccessary to branch on a subproblem, then it is fathomed. The following three
situations result in a subproblem being fathomed:

(1) The subproblem is infeasible;

{2) the subproblem yields an optimal solution in which all variables have integer values; and

(3) the optimal z-value for the subproblem does not exceed (in a max problem) the current LB,

Step 2 A subproblem may be climinated from consideration in the following situations:

(1) The subproblem is infeasible (in the Telfa problem, subproblem 4 was eliminated for this
reason);

(2) the LB (representing the z-value of the best candidate to date) is at least as large as the

z-value for the subproblem (in the Telfa problem, subproblems 3 and 7 were eliminated for
this reason).



Comabien &) Pkt Goulel h diffosits dpanct

?M Qiner a \‘S'}'m;% Commmeted. ohonk )
mtHh coata Wném.uk 40 v oves

& «
@ Fod e micrien (o) b wtunvle 9 fa
mple it shil shomaly comseteel

&u,mh m

(B T o gkl (MCNE) ik frosbatin
the provloe-
(B) Nn&.&%&x rjmrzou O\Qjﬁ&. ks

Vi o [fﬂ’w’g Q,/uszu ‘o mewj
g{‘rmf% G awestadngss -

h-\_\__h_-._"_

((_0"{3‘0‘/"",('1 "GDVM-TQA-«aTﬂﬂ&)



—

Example GLIHE‘_i_thcr Or Constraints/Dorian Auto is considering manufacturing three types of
autos: compact, midsize, and large.
The resources required for, and the profits yielded by, each type of car are shown in Table 8.
Currently, 6,000 tons of steel and 60,000 hours of labor are available.

For production of a type of car to be cconomically feasible, at least 1,000 cars of that typc must
be produced.

Formulate an [P to maximize Dorians profit.

Let @3, my, 3 be the number of compact, midsize, large cars produced.

We know that if any cars of a given type are produced, then at least 1,000 cars of that
type must be produced. Thus, for = 1, 2. 3, we must have x; = 0 or x; = 1,000, Steel
und lubor are limited, so Dorian must satisly the following five conslraints:

[lkuns!rin‘ﬂ g = 0orx = 1,000

“Constraint 2 X2 = 0 orx, = 1,000,
= 1,000.

Constraint 4 The cars produced can use at most 6,000 tons of steel.

Constraint 3 x; = 0 or x,

Ll W

Constraint 5 The cars produced can use at most 60,000 hours of labor.
TABLE 8

We may replace Constraint 1 Resourcas and Profits for Thres Types of Cars
s R > " o S ==
st ] = S e i DR
1.000 _SM_I_ - Steel required 1.5 tons 3 tons 5 tons
’ T ul M) Labor requircd 30 hours 25 hours 40 hours
yvi=00or1
Profit vielded ($) 2.006 3,000 4.000

To ensure that both x, and 1,000 — x,; will never exceed M,, it suflices to choose M, large
enough so that A, excéeds 1,000 and v, is always less than Af,. Building £229¢ — 2 000

compacts would use all available labor {and still leave some steel). so at most 2,000 com-
pacts can be built. Thus, we may choose M, = 2,000.

We can apply similar argument to the second and third constraints and get the following.

max = = 2xy; + 3x; + 4x;
s.1. x; = 2,000,
1,000 — x; = 2,000(1 — 1)
xz = 2,000y
1,000 — x; = 2,000(]1 — v3)
x3 = 1,200,
1,000 — x3 = 120001 = y3)
1.5y + 3x; + 5x3 = 6,000 {Steel constraint)
30x, 4+ 25x2 + 40x, = 60,000 {Labor constraint)

Xy, X2, x3 = 0; Xy, X3, X3 intcgcr
Yy, Vo, V3 = Oorl
The optimal solution o the 1P is = = 6,000, x; = 2000, py = |, v, = v, = x; = x3 = 0.
Thus. Dorian should produce 2,000 midsize cars, If Dorian had not been required to man-

ufucture at least 1,000 cars of each lype, then the optimal solution would have been o
produce 570 compacts and 1,715 midsize cars.



H-Then Constraints

In many : s the following situation occurs: if a constraint
|!"f (xpav2.....x;) > 01is sati‘sf;yltlle  the constraint glx, xi, . ... %) = § must be satis-
“fedrwhile T/ (v, 23, 7. 7, X,,) = 0 is not satisfied. then g(x,, xa, . . ., x,) = 0 may or may

not be satisfied. In short, we want to ensure that f(x), xz, . .., x,) > 0 implies g(x,, x2,

s X = 0,

To cnsure this, we include the following constraints in the formulation:

—g(X), X2, ..., Xp) = My (28)
f(xl'rrr;’J- -'vxn) = M(l __'l:') [29)
y=0orl
As usual, M is a large positive number. (M must be chosen large enough so that /= M
and —g = M hold for all values of x,, xs. . ... x, that satisfy the other constraints in the
problem.)
Example

To illustrate the usc of this idea, supposc we add the following constraint to the Nickles lock-
box problem: If customers in region 1 send their payments to city 1, then no other customers
may send their payments to city 1. Mathematically, this restriction may be expressed by

Ifx;,; =1, then Xp) ™= x3) = x4, =0 (303
Because all x; must equal 0 or 1. (30) may be written as
Ifx, =0, then Xop + x5 + x4 =0, or —Xg; = X3 —xq =0 (307}
If we define /= x;, and g = —x3; — x3; — xq,. We can use (28) and (29) to express (30')

[and therefore (30)] by the following two constraints:

X323 =+ X3 + Xa1 = M‘p

Because —g and fcan never exceed 3, we can choose A = 3 and add the following con-
straints to the original lockbox fermulation:

x21 + ox3; +oxg

=l



