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Introduction

Mn (Hn): the set of n× n complex (Hermitian) matrices.

For example: A =
[

i 2 + i
6− 4i 2− i

]
, B =

[
9 1 + i

1− i 2

]
= B† = (B)t.

Quantum states are represented as density matrices,
i.e., Hermitian matrices with nonnegative eigenvalues summing up to 1.
Denote by Dn the set of density matrices in Mn.
A quantum channel (operation) E : Mn →Mn is a trace preserving
completely positive map admitting an operator sum representation

ρ→ Quantum

Channel E
→ E(ρ), E(ρ) = E1ρE

†
1 + · · ·+ ErρE

†
r ,

for some E1, . . . , Er ∈Mn such that E†1E1 + · · ·+ E†rEr = In.
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Quantum information and AI

A quantum state (system) has m measurable or observable states is
represented as an m×m density matrix (positive semi-definite matrix
with trace 1).

A 2-dimensional quantum state ρ such as a photon is a 2× 2 density
matrix and is called a qubit (quantum bit).

Every qubit ρ has the form 1
2

[
1 + a b + ic
b− ic 1− a

]
with 1 ≥ a2 + b2 + c2.

Measurable states are |0〉〈0| =
[

1 0
0 0

]
and |1〉〈1| =

[
0 0
0 1

]
,

which are the alive and dead Schrodinger’s cat in classical world.

A diagonal matrix
[

a 0
0 1− a

]
is a classical state.

The matrix ρ is the Schrödinger’s cat in the
quantum environment.
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Quantum AI

A system of n-qubits is represented as an 2n × 2n density matrix.

Upon measurement, ρ will collapse to one of the N = 2n measurable
states E11, . . . , ENN .
For a two qubit system, ρ = [ρij ] ∈M4, the four measurable states are:

|00〉〈00| = E11, |01〉〈01| = E22, |10〉〈10| = E33, |11〉〈11| = E44.

In quantum information science, one would apply suitable quantum
operations to “influence” (the evolution environment of) the system so
that the measurement will yield some useful conclusions.
Recently, researchers tried to use this idea to determine whether a certain
input (state) can be “correctly” identified as a certain outcome yj ∈ T .

ρ→ Quantum

Operation E
→ E(ρ).
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Quantum Error Correction

Basic Problem
How to recover useful/important information (data bits) after it passes through
a noisy quantum channel E?

Correction scheme Encode the data bits ρ̃ ∈ Dk as ρ ∈ Dn for a larger n, and
send it through the channel E to get E(ρ). Then do one of the following.

Apply a syndrome measurement to E(ρ) using additional qubits;
then construct a recovery channel R so that R ◦ E(ρ) = ρ.

ρ̃→ ρ→ E(ρ)→ E(ρ)⊗ σ → (E(ρ), σ̃)→ R ◦ E(ρ) = ρ→ ρ̃.

P̃ → P1P2P2 → Q1Q2Q3 → (Q1Q2Q3)⊗ (R1R2)→ ((Q1Q2Q3), (M1M2))→ (P1P2P3)→ P̃ .

Use operator algebra techniques to determine an error avoiding subspace
to construct a recovery channel R.

ρ̃→ ρ→ E(ρ)→R ◦ E(ρ) = ρ̂→ ρ̃.

P̃ → P1P2P2 → Q1Q2Q3 → P̃ ⊗ (R1R2))→ P̃ .
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Example 1: Bit-flip channel

Consider the bit-flip error ρ̃ 7→ Xρ̃X† with X =
(

0 1
1 0

)
that will exchange

the two classical states |0〉〈0| =
(

1 0
0 0

)
and |1〉〈1| =

(
0 0
0 1

)
.

We can encode one qubit ρ̃ ∈M2 into a 3-qubit system ρ ∈M23 , i.e., we will
use two qubits to protect one qubits. The channel on three qubits has the form:

ρ 7→ p0ρ+ p1E1ρE
†
1 + p2E2ρE

†
2 + p3E3ρE

†
3 ,

where p0, p1, p2, p3 ≥ 0 summing up to 1,

E1 = X ⊗ I2 ⊗ I2, E2 = I2 ⊗X ⊗ I2, E3 = I2 ⊗ I2 ⊗X.

QECC with syndrome measurement.
QECC without syndrome measurement.

Chi-Kwong Li Quantum AI and Error Correction



Example 1: Bit-flip channel

Consider the bit-flip error ρ̃ 7→ Xρ̃X† with X =
(

0 1
1 0

)
that will exchange

the two classical states |0〉〈0| =
(

1 0
0 0

)
and |1〉〈1| =

(
0 0
0 1

)
.

We can encode one qubit ρ̃ ∈M2 into a 3-qubit system ρ ∈M23 , i.e., we will
use two qubits to protect one qubits.

The channel on three qubits has the form:

ρ 7→ p0ρ+ p1E1ρE
†
1 + p2E2ρE

†
2 + p3E3ρE

†
3 ,

where p0, p1, p2, p3 ≥ 0 summing up to 1,

E1 = X ⊗ I2 ⊗ I2, E2 = I2 ⊗X ⊗ I2, E3 = I2 ⊗ I2 ⊗X.

QECC with syndrome measurement.
QECC without syndrome measurement.

Chi-Kwong Li Quantum AI and Error Correction



Example 1: Bit-flip channel

Consider the bit-flip error ρ̃ 7→ Xρ̃X† with X =
(

0 1
1 0

)
that will exchange

the two classical states |0〉〈0| =
(

1 0
0 0

)
and |1〉〈1| =

(
0 0
0 1

)
.

We can encode one qubit ρ̃ ∈M2 into a 3-qubit system ρ ∈M23 , i.e., we will
use two qubits to protect one qubits. The channel on three qubits has the form:

ρ 7→ p0ρ+ p1E1ρE
†
1 + p2E2ρE

†
2 + p3E3ρE

†
3 ,

where p0, p1, p2, p3 ≥ 0 summing up to 1,

E1 = X ⊗ I2 ⊗ I2, E2 = I2 ⊗X ⊗ I2, E3 = I2 ⊗ I2 ⊗X.

QECC with syndrome measurement.
QECC without syndrome measurement.

Chi-Kwong Li Quantum AI and Error Correction



Example 1: Bit-flip channel

Consider the bit-flip error ρ̃ 7→ Xρ̃X† with X =
(

0 1
1 0

)
that will exchange

the two classical states |0〉〈0| =
(

1 0
0 0

)
and |1〉〈1| =

(
0 0
0 1

)
.

We can encode one qubit ρ̃ ∈M2 into a 3-qubit system ρ ∈M23 , i.e., we will
use two qubits to protect one qubits. The channel on three qubits has the form:

ρ 7→ p0ρ+ p1E1ρE
†
1 + p2E2ρE

†
2 + p3E3ρE

†
3 ,

where p0, p1, p2, p3 ≥ 0 summing up to 1,

E1 = X ⊗ I2 ⊗ I2, E2 = I2 ⊗X ⊗ I2, E3 = I2 ⊗ I2 ⊗X.

QECC with syndrome measurement.

QECC without syndrome measurement.

Chi-Kwong Li Quantum AI and Error Correction



Example 1: Bit-flip channel

Consider the bit-flip error ρ̃ 7→ Xρ̃X† with X =
(

0 1
1 0

)
that will exchange

the two classical states |0〉〈0| =
(

1 0
0 0

)
and |1〉〈1| =

(
0 0
0 1

)
.

We can encode one qubit ρ̃ ∈M2 into a 3-qubit system ρ ∈M23 , i.e., we will
use two qubits to protect one qubits. The channel on three qubits has the form:

ρ 7→ p0ρ+ p1E1ρE
†
1 + p2E2ρE

†
2 + p3E3ρE

†
3 ,

where p0, p1, p2, p3 ≥ 0 summing up to 1,

E1 = X ⊗ I2 ⊗ I2, E2 = I2 ⊗X ⊗ I2, E3 = I2 ⊗ I2 ⊗X.

QECC with syndrome measurement.
QECC without syndrome measurement.

Chi-Kwong Li Quantum AI and Error Correction



Example 2: Fully correlated channels

Denote the Pauli’s matrices by

σ0 = I2, σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

A fully correlated channel E on n-qubit states are defined by

E(ρ1 ⊗ · · · ⊗ ρn) =
∑3

j=0 pj(σjρ1σ
†
j )⊗ · · · ⊗ (σjρnσ

†
j ).

Theorem [Li, Lyles and Poon, 2019]
For the fully correlated channels on n-qubits with error operators Xn, Yn, Zn,
there are efficient error correction schemes.

1 When n = 2k + 1 is odd, one can use one arbitary qubit to protect
2k-qubits of data.

2 When n = 2k + 2, one can transmit two classical bits and 2k-qubits of
data without error!

The two classical bits encoded as qubits will be used to protect the 2k-qubits.
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1 When n = 2k + 1 is odd, one can use one arbitary qubit to protect
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The two classical bits encoded as qubits will be used to protect the 2k-qubits.
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Implementation

The scheme was implemented using Matlab, Mathematica, Python, and the
IBM’s quantum computing framework qiskit.
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Note that our scheme is good for multiple times of quantum error correction
without syndrome measurement.
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Experimental results
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Current research

IBM quantum computers have improved; better results have been
obtained.

Results have been obtained for the general fully correlated quantum
channels on n-qubits with error operators W⊗n for unitary W ∈M2.

In [C.K. Li, M. Nakahara, Y.T. Poon, N.S. Sze, H. Tomita, 2011] we
used n = 2k + 1 physical qubits protect k logical qubits.

Note that in the above encoding, |u〉 = |0〉 and |v〉 is arbitrary.
The recursive scheme is useful because of its efficiency in encoding and
decoding. We will study whether it can protect classical information.
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Any questions?

Thank you for your attention!
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