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Abstract

This paper looks into the multifaceted world of prime numbers and their significance in cryptography,
mathematics education, and beyond. Beginning with a historical overview, it explores the foundational
role of primes in number theory, highlighting key theorems and conjectures. The paper then delves into
the practical applications of primes, focusing on their crucial role in modern cryptographic systems such
as RSA and Diffie-Hellman key exchange. Through a examination of these cryptographic techniques, it
illustrates how the unique properties of prime numbers underpin the security of digital communication.
It also explores the connections between prime numbers and diverse fields such as nature, mathematics
education, and fractals. To conclude, the paper’s purpose is to emphasize the pervasive influence of
prime numbers, emphasizing their fundamental importance in society.

1 Introduction

The prime numbers are everywhere, or so we are told. Prime numbers are a staple of every
elementary mathematics education, yet I feel as if our education system has failed us with
providing any “real world” applications of prime numbers in mathematics courses. They tend
to pop up as counterexamples or display a weird property when plugged into an equation.
While this is interesting in a purely mathematical sense, I wanted to investigate places where
prime numbers show up in our daily lives. Primes are introduced as a fundamental math
topic, but do they share a similar importance to concepts such as addition and multiplication?
In this paper, I want to expose the reader to cryptography, the main way by which humans
have adapted the properties of prime numbers into a useful tool for randomization and
secrecy.

1.1 What are Primes?

It would be remiss of this author to assume the reader already possesses the necessary
information to follow along with the remainder of this paper, so I will take the time to lay
out a foundation of the topic here.

Simply put, prime numbers are positive integers greater than 1 whose only divisors are
1 and itself. In set notation we have P = {x ∈ N |x mod y = 0 =⇒ y = 1 or y =
x, x > 1, y ∈ N}. There are infinitely many prime numbers, and every integer has a unique
prime factorization, that is, given x ∈ Z, we can write x = p1 · p2 · · · pn where n ∈ N and
p1, · · · pn ∈ P . This fact is known as the Fundamental Theorem of Arithmetic. This unique
prime factorization is very difficult to determine given a sufficiently large number, a fact that
we will use later on in the application section.
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Figure 1: Prime Counting Function

1.2 History of Primes

The first civilization to extensively research the prime numbers was the Greeks. In Euclid’s
famous book Elements, he formulated the Fundamental Theorem of Arithmetic. It is note-
worthy that Euclid lived in a time before the prevalence of algebra, meaning he defined
prime numbers geometrically: “A number measured by a unit alone”. Roughly 100 years
after Euclid published elements, another Greek mathematician Eratosthenes devised an al-
gorithm to calculate all of the primes less that an integer n which is now know as the Sieve
of Eratosthenes.

After these rather elementary results, there was a gap of nearly 2000 years before a
significant result in prime number theory appeared, this gap is commonly know as the Dark
Ages.

Pierre de Fermat is now considered one of the great mathematicians of the 1600s, and his
most famous result involving prime numbers is essential for the applications discussed today.
Fermat’s Little Theorem states for any integer a and any prime p, we have the following:

ap−1 ≡ 1 mod p

We will use this result specifically in RSA cryptography.
After Fermat’s Theorem, a young Carl Friedrich Gauss stumbled across prime number

theory. He was particularly interested in the distribution of the prime numbers, so he studied
the Prime Counting Function, as shown in Figure 1. The Prime Counting Function is positive
function which the inputs are positive integers and the outputs are the number of primes less
than that integer. Gauss wanted to model this function and fortunately, he was concurrently
working on a problem involving the logarithmic integral. Thus, he derived the Prime number
Theorem, which says the distribution of the prime numbers is relatively regular. That is,
given a positive integer n, the number of primes less than n is roughly 1

log(n)
.

Continuing the theme of hunting for a way to represent the distribution of primes, in 1859,
German mathematician Bernhard Riemann introduced a new way to model the primes, this
time based on the zeros of a complex function and the logarithmic integral. This model
provides a much better representation of the Prime Counting Function. The model’s true
nature however can not be fully verified without the solution to the Riemann Hypothesis.
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1.3 Famous Prime Problems

The Riemann Hypothesis isn’t the only famous problem closely related to the properties
of prime numbers. Three of the most notable open questions in mathematics related to
patterns within the set of prime numbers

1.3.1 Goldbach Conjecture

The Goldbach Conjecture is one of the oldest unsolved problems in mathematics. It was
a simple observation conjectured by Christian Goldbach in 1742. It states that every even
number is the sum of two prime numbers. That is, every even number has a unique decom-
position into a sum of primes. No counterexample has been found, and no proof has been
discovered.

1.3.2 Twin Prime Conjecture

It is known that generally the gaps between the primes get larger the further one looks down
the number line. In a way, the Twin Prime Conjecture contradicts that statement. The
Twin Prime Conjecture states that there are infinitely many primes that differ by 2 from
another prime. Primes that differ from another prime by 2 are known as twin primes. For
example, 11 and 13 are a twin prime pair.

1.3.3 Beal Conjecture

The Beal Conjecture is slightly lesser know and a modification of the equation popularlized
by Fermat and Pythagoras.

Ax +By = Cz

Beal’s Conjecture is if the above statement holds true for positive integers A,B,C and
x, y, z ≥ 3, then A,B,C must have a common prime factor.

The introduction of these conjectures serves to emphasize the magnitude of the work
being done by prominent mathematicians on the properties of the primes. In a more general
sense, the properties of the primes are important because within every integer are hidden
primes, that is, it has a prime factorization. So in a round about way, all integers are primes
in disguise, proving things about the prime numbers can give us deeper insights into the
integers as a whole, which in itself is important. However, that is not the complete purpose
of this paper, as we still want to examine the more direct impact primes have on our lives.

2 Cryptography

2.1 Cybersecurity

Before cryptography can be introduced, we need to first ensure the basics of cybersecurity
are understood. Cybersecurity is the practice by which we protect devices and data from
unauthorized access.

It is very easy for an entity to monitor your activity on the internet. It is necessary for
someone or thing see the data that you send and receive to make sure your data is sent to
and received from the proper recipient and sender. So that raises the question: How do we
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Figure 2: Basic Asymmetric Encryption Sequence

ensure that these “men in the middle” can’t unlawfully see our data? The answer lies in
cryptography.

Cryptography is the art of writing or solving codes, that is, turning plain text into some
sort of incomprehensible sequence of characters that for our purposes we will refer to as
cipher text, then reverting the cipher text to plain text when the correct entity receives it.
Encryption is absolutely vital for the internet to function as it does today, as it protects
all messages, passwords, queries etc. from unwanted attention. Figure 2 shows the basic
sequence by which an encryption/decryption algorithm would work. A message is encrypted
by one user using an encryption key, and then that cipher text is sent to another user. When
that user receives the text, they use a decryption key to decrypt that cipher text, turning it
back to plain text. This scheme is know as asymmetric encryption because the encryption
and decryption keys are distinct. So now the question becomes how can we generate a key
pair? When thinking about the components of encryption algorithms like plain text, cipher
text, and keys, it is useful think of text as numbers and keys as operations on those numbers.
In the world of computers, text is converted to a sequence of numbers before it can be sent.

2.2 RSA

The most popular key generation algorithm is RSA. In 1977 three mathematicians from MIT,
Ron Rivest, Adi Shamir, and Leonard Adleman, formulated a way to generate an infinite
number of key pairs using the properties prime numbers. RSA is prevalent anywhere the
internet is used, and the key generation algorithm is as follows.

Begin by choosing two primes p and q. In practice, these primes are between 1024 and
2048 bits long, meaning between 309 and 617 digits. For the examples, we will use smaller
primes for simplicity. After choosing the primes, we compute n = pq and (p − 1)(q − 1).
Then we choose a number that is coprime to (p−1)(q−1), we will call this number e. Next,
we will find d such that de ≡ 1 mod (p − 1)(q − 1). Now we have our public and private
keys, with the public key being (n, e) and private key being (d, p, q).

Now we can encrypt a message m into cipher text c in the following way:

me mod n = c (1)

And decrypt:

cd mod n = m (2)

To show an example of this algorithm, we can begin with two (small) primes p = 7,
q = 11, their product pq = n = 77, and (p− 1)(q − 1) = 60. Next, a number coprime to 60
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is 7, so e = 7. Finally, we can calculate that 7 · 43 = 301 mod 60 = 1. Thus, d = 43. So now
we have a public private key pair, public: (60, 7) private: (43,7,11).

Let’s say we want to send a simple private message using this key pair. The message
we want to send is 8. The sender should use the formula in Equation 1 to compute the
cipher text. 87 mod 77 = 57. It should be noted here that modular exponentiation is not
a bottleneck in this process as the result can be calculated without calculating me using a
algorithm known as binary exponentiation.

Now the recipient can decrypt the message using Equation 2. 5743 mod 77 = 8.
A very important observation here that we always use the recipient’s public key to encrypt

the message, so the recipient can use their private key to decrypt the message.

2.3 RSA Proof

To exemplify the importance of primes in this algorithm, we’ll go through a brief proof.
First, however, we should isolate the claim that is being made. In RSA, we are using that
for integers m and c with c = me mod n, where n is the product of primes p and q and e is a
natural number coprime to (p− 1)(q− 1), that we have cd mod n = m, where d is a number
such that de ≡ 1 mod n. This is equivalent to the claim (me)d ≡ m mod n, so this is what
we will prove.

Claim: (me)d ≡ cd ≡ m mod n

Proof. First we should note that e and d always exists. e exists because every number has
at least one number less than it but also coprime to it. d exists because if we consider the
unit group U((p − 1)(q − 1)), we know that e ∈ U((p − 1)(q − 1)) by definition. Thus as
e is an element in a group, it must also have a multiplicative inverse in that group. That
multiplicative inverse is d.

Using the definition of the modulus, we get the following result:

de = 1 + (p− 1)(q − 1)

Thus,

med = m1+(p−1)(q−1)

= m ·m(p−1)(q−1)

= m · (m(p−1))(q−1)

≡ m(1)q−1 mod p (Fermat’s Little Theorem)

≡ m mod p

Similarly,

med = m1+(p−1)(q−1)

= m ·m(p−1)(q−1)

= m · (m(q−1))(p−1)

≡ m(1)p−1 mod q (Fermat’s Little Theorem)

≡ m mod q
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Thus, we have med ≡ m mod p and med ≡ m mod q. Now consider the system of
equations:

x ≡ m mod p

x ≡ m mod q

The Chinese Remainder Theorem tells us that this system of equations has a unique
solution for x in modulo pq. We know due to the reflexive property of equivalence relations
that:

m ≡ m mod p

m ≡ m mod q

and we just showed that:

med ≡ m mod p

med ≡ m mod q

Thus by the Chinese Remainder Theorem we have med ≡ m mod pq, which equates to
med ≡ m mod n, as desired.

Figure 3: Basic Symmetric Encryption Sequence

2.4 Symmetric Cryptography

RSA is an example of asymmetric cryptography, meaning that two keys are required to
complete the encryption/decryption sequence. Another popular form of encryption is known
as symmetric cryptography. Symmetric cryptography uses the same key for encryption and
decryption, which allows it to work faster. Thus, it is typically used on large blocks of stored
data that need to be able to be retrieved quickly. However, say for example Bob and Alice
have data that they need to encrypt using the same symmetric encryption key. Since this key
is used for encryption and decryption, it can’t be public like in RSA, otherwise an attacker
would be able to both read and write ciphertext. So, Bob and Alice need a secure way to
generate a key over an open communication channel. This simplifies to both parties semi-
independently generating the same pseudorandom number (as again we should remember
that keys in cryptography are just very large numbers). Once again, we can resort to the
properties of the prime numbers to solve our problem.
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2.5 Diffie-Hellmann

In 1976, Whitfield Diffie and Martin Hellman detailed an algorithm to secretly exchange a
symmetric key. The procedure is as follows:

To begin, Alice and Bob mutually decide upon two numbers, g and n. g is a relatively
small integer called a generator, and n is a large prime number. Then Alice decides upon a
number a, such that 1 < a < n, and Bob decides upon a number b, such that 1 < b < n. a
is private to Alice and b is private to Bob. Alice can then compute ga mod n and send the
result over the open communication channel, and Bob can compute gb mod n and send it
to Alice. Now the numbers in the public domain are g, n, ga mod n, and gb mod n. a and b
are private to Alice and Bob respectively. Now Alice can take gb mod n and raise it to the
a, yielding (gb)a mod n or gab mod n. Likewise, Bob can take ga mod n and raise it to the
b, yielding (ga)b mod n or gab mod n. Thus, both Alice and Bob have arrive at the number
gab mod n without ever directly sending it over the channel. Now they can use it as their
key for symmetric encryption/decryption.

While it is apparent that primes play a role in the Diffie-Hellmann Key Exchange, it is
not obvious why they are used, and why this algorithm provides security.

2.6 Primes and the Discrete Logarithm Problem

When we perform the Diffie-Hellmann Key Exchange, we rely on one key component for
security. That is, we hope that an attacker given ga mod n cannot compute what a is.
This computation is known as the discrete log problem. Of course, we are familiar with the
continuous log problem, that is, given gx = b, we have efficient methods to compute x =
logg(b), but with the discrete log problem, given gx mod n = b, we need to solve x = dlogg(b).
It is unable to obtain this d efficiently using any of the algorithms developed throughout the
history of computer science. The discrete log problem is know as an exponential problem,
meaning the time it takes for a computer to solve the problem increases exponentially as
the size of n increases. There is no exact proof that this problem can only be solved by
exponential algorithms, but a significant amount of effort has been put in trying to find an
efficient solution, but we’ve come up empty handed.

Looking into the math behind Diffie-Hellmann, we first notice that we begin by choosing
a large prime number n, where n is of the form 2p+ 1 with p being prime, and a generator
g. Primes of the form 2p + 1 are known as safe primes and are the ideal candidates for the
primes used in the Diffie-Hellmann Key Exchange. We choose n to be prime to create a
group. We know from group theory that Zn (all of the positive integers less than n) form a
group under the operation multiplication mod n. g is chosen to be a number that “generates”
Zn, that is every element in Zn can be written as some power of g. For example, given prime
n = 7 (n = 2(3) + 1). We can find a generator of Z7 because we know that the order of a
generator is equal to the size of the group. The size of Z7 is 6 (2p or 2·3). We also know that
the order of every element divides size the group. Since we chose n to be 2p + 1, we know
that the elements must have order 2, p, or 2p or 2,3, or 6 in our example (we will disregard
the element of order 1). Thus we just need to find an element that is not of order 2 or p.
Going back to our example we are looking for elements that are not of order 2 or 3, consider
2 ∈ Z7. 2

2 ≡ 4 mod 7, 23 ≡ 1 mod 7, thus 2 has order 3. Next consider 3 ∈ Z7. 3
2 ≡ 2 mod

7, 33 ≡ 6 mod 7, so 3 does not have order 2 or 3, thus it must have order 6 and is therefore
our generator. Now that we know that 3 is a generator, we know that 3x mod 7 has the
potential to be any element in Z7 for 1 < x < 8.
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To exemplify the importance of primes in this scheme, if we try the same process with a
nonprime n, say 8, we know from group theory that Z8 is not a group under the operation
of multiplication, that is because the elements 2,4, and 6 do not have an inverse. We could
try with just the unit group of 8 under multiplication, U(8) = {1, 3, 5, 7}, but we can
easily see that this group is not cyclic as each element is it’s own inverse meaning there
are no generators. To generalize, we know that for every nonprime n, Zn is not a group.
Additionally, the Primitive Root Theorem tells us that U(n) is not a cyclic group unless
n = 1, 2, 4, pk, or 2pk for some odd prime p and k ≥ 1. Of course, if n = p, U(n) = Zn.
Thus, the security of the discrete log problem falls apart when we consider nonprime n’s.

3 Connections and Reflections

For the last part of this paper, I’d like to look into the connections between prime numbers
and some of the topics we covered in the MATH400 class this semester. As primes are
somewhat of an omnipresent mathematical topic, they pop up in various scenarios.

3.1 Nature

It is famously known that prime numbers show up in the life cycles of cicadas. Cicadas only
come out every 7,13, or 17 years. It has been conjectured that this is because they evolved
to avoid the life cycles of their predators. For example, if they came out every 8 years, they
would align with predators who have 1 year life cycles, 2 year life cycles, 4 year life cycles,
and 8 year life cycles. Instead, they only direct interact with predators with 1 and 7 year
life cycles.

3.2 Learning Math

Since prime numbers are such a foundational part of math, it makes sense that there is
some sort of correlation between an individual’s understanding of prime numbers and their
mathematical proficiency. Studies have show that certain students with Autism Spectrum
Disorder (ASD) have an innate ability to classify numbers as prime. It has been theorized
that this is because subjects with ASD have some sort of system that allows them to visual
numbers as image and group them in a way that could be seen as similar to factoring (5).
Another story was told by a famous British neurologist named Oliver Sacks who challenged
two young men with ASD to game of naming large prime numbers. According to Sacks, the
participants were able to name prime numbers with 10 digits. This research signifies that
there is some sort of fundamental ability associated with prime numbers.

3.3 Fractals

There’s also a connection between the distribution of prime numbers and fractals. The
Ulam Spiral, for example, visually represents the distribution of prime numbers in a spiral
pattern, which exhibits fractal like characteristics. Fractal theory is interestingly interlinked
with number theory, and it likely that more discoveries will lead to further knowledge on
the distributions of the primes, as an exhorbitant amount of research is being done on the
subject.
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Figure 4: Ulam Spiral

3.4 Reflections

To answer the question I posed at the beginning of the paper, I think primes are of utmost
importance in a mathematical education. With the research for this paper I really wanted
to look for “real world” applications of the primes, but I wasn’t coming up with a lot that
I would have considered practical. Of course, there was the cryptography aspect of the
primes which was very interesting, but other than that, I wasn’t really coming up with
much. However, I think somewhere along the way I realized that my idea of “practicality”
was a bit unreasonable. At this point, I was too far in to rework the entire premise, but I
did want to mention something here. My standard for practicality was a bit naive. I think I
now realize that there is practicality in the fact that primes simply exist. Without primes,
there simply is no number system. I think in the in class presentation, it would have been
nice to incorporate this arc into lecture.
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