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Amidakuji
It is a scheme for assigning n people Pi,..., P, to n jobs el RO
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Amidakuji/Ghost Leg Drawing

Amidakuji
It is a scheme for assigning n people Pi,..., P, to n jobs S QL
Ji, ..., Jn “randomly”. D
Draw vertical lines from P; to J; fromi=1,...,n.
Draw some horizontal line segments randomly between B 00 s
any two vertical lines that are next to each other e
so that no horizontal lines meet. i
@ To assign a job for P;, start from the top of the i 104
i-th line to the bottom, and make a turn whenever
a horizontal segment is encountered. aopan

@ Why do we always get an one-one correspondence (bijection)?

@ Can we get all possible job assignments?

@ What is the minimum number of horizontal segments needed for a given
job assignment?
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Answer of Question 1
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Answer of Question 1

@ Polya principle:

If one cannot solve a problem, one can try to solve an easier problem first.
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Answer of Question 1

@ Polya principle:
If one cannot solve a problem, one can try to solve an easier problem first.

@ What if there is no horizontal line segment?

@ What if there is one horizontal line segment?
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Answer of Question 1

@ Polya principle:
If one cannot solve a problem, one can try to solve an easier problem first.

@ What if there is no horizontal line segment?
@ What if there is one horizontal line segment?

@ An easy induction argument!
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Bubble sort

@ Regard the job assignment as a permutation (a seat reassignment)
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@ Use Coxeter transpositions (i,7 4+ 1) fori =1,...,n — 1.

@ For any o, we can determine its number of inversions, which will be the
minimum number of Coxeter transpositions needed to generate o.

Example For 0 = [5, 3,1, 2, 4], total number of inversions is: 44+0+2 = 6, and
o —[3,5,1,2,4] — [3,1,5,2,4] — [3,1,2,5,4]
— [3,1,2,4,5] — [1,3,2,4,5] — [1,2,3,4,5],
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@ Use Coxeter transpositions (i,7 4+ 1) fori =1,...,n — 1.

@ For any o, we can determine its number of inversions, which will be the
minimum number of Coxeter transpositions needed to generate o.

Example For 0 = [5, 3,1, 2, 4], total number of inversions is: 44+0+2 = 6, and
o —[3,5,1,2,4] — [3,1,5,2,4] — [3,1,2,5,4]

—[3,1,2,4,5] — [1,3,2,4,5] — [1,2,3,4, 5],
So o =1(1,2)(2,3)(3,4)(4,5)(1,2)(2, 3).
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Bubble sort

@ Regard the job assignment as a permutation (a seat reassignment)
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@ Use Coxeter transpositions (i,7 4+ 1) fori =1,...,n — 1.

@ For any o, we can determine its number of inversions, which will be the
minimum number of Coxeter transpositions needed to generate o.

Example For 0 = [5, 3,1, 2, 4], total number of inversions is: 44+0+2 = 6, and
o —[3,5,1,2,4] — [3,1,5,2,4] — [3,1,2,5,4]

—[3,1,2,4,5] — [1,3,2,4,5] — [1,2,3,4, 5],
So o =1(1,2)(2,3)(3,4)(4,5)(1,2)(2, 3).

Answers of Questions 2 and 3

@ We can always convert a permutation o to [1,...,n] using m steps,
where is the number of inversions of o.
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Bubble sort

@ Regard the job assignment as a permutation (a seat reassignment)

. . 1 2 - n
o=l =, )

@ Use Coxeter transpositions (i,7 4+ 1) fori =1,...,n — 1.

@ For any o, we can determine its number of inversions, which will be the
minimum number of Coxeter transpositions needed to generate o.

Example For 0 = [5, 3,1, 2, 4], total number of inversions is: 44+0+2 = 6, and
o —[3,5,1,2,4] — [3,1,5,2,4] — [3,1,2,5,4]

—[3,1,2,4,5] — [1,3,2,4,5] — [1,2,3,4, 5],
So o =1(1,2)(2,3)(3,4)(4,5)(1,2)(2, 3).

Answers of Questions 2 and 3

@ We can always convert a permutation o to [1,...,n] using m steps,
where is the number of inversions of o.

@ Worst case occurs at [n,n — 1,...,1]; we need

(n—1)4---4+1=mn(n—1)/2 steps.
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A variation

@ A general principle in study and research:
If you have solved a problem, extend the techniques to related problems.
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So, the worst case requires n — 1 steps.
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A variation

@ A general principle in study and research:

If you have solved a problem, extend the techniques to related problems.
@ What if we consider transpositions of the forms (i,7 + 1) and (4,7 + 2)?
@ How about using transpositions (¢,7 + 1), (¢,4 + 2), (4,7 + 3), etc.?

An extreme case: Using all (4,7) with 1 < j <n

Decompose o as product of k disjoint cycles (including fixed points).
Then o is a product of n — k transpositions.

So, the worst case requires n — 1 steps.
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Then o = (1,7)(1,6)(1,5)(1,3)(2,9)(2,4).
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Open problems

Let 1 <m < n, and let G, be the set of transpositions of the form (¢, + £)
with 1 < ¢ < m.
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Open problems

Let 1 <m < n, and let G, be the set of transpositions of the form (¢, + £)
with 1 < ¢ < m.

@ For a given o € S, find the smallest r such that o is the product of r
transpositions in G,.
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Open problems

Let 1 <m < n, and let G, be the set of transpositions of the form (¢, + £)
with 1 < ¢ < m.

@ For a given o € S, find the smallest r such that o is the product of r
transpositions in G,.

@ Determine the optimal (smallest) r* = r*(n, m) so that every o € S, is a
product at most r* transpositions in G,.
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Partial results of the general problem

We have the following list for 7*(n, m) for S, and (4,7 + £) with £ < m,

nm|1 2 3 4 5 6 7 8 9 10
2 |1

3 13 2

4 |6 4 3

5 |10 5 5 4

6 |15 71 6 6 5

7 |21 [100 8 7 7 6

8 |28 [14 [10) 9 8 8 7

9 |36 [16] [11] 10 10 9 9 8

10 |45 [19] [14] [12] 11 11 10 10 9

11 |55 247 187 15?7 13 12 12 11 11 10

where the entries marked by brackets are obtained by computer programming.
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Cayley graphs

@ The Cayley graph of the the set S,, of permutations using special
generators.
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Cayley graphs

@ The Cayley graph of the the set S,, of permutations using special
generators.

@ It is known that S,, can be generated by L = (1,2,...,n) and S = (1,2).

Factorize o € S,, into the product of L and S with the smallest number
of terms.
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Cayley graphs

@ The Cayley graph of the the set S,, of permutations using special
generators.

@ It is known that S,, can be generated by L = (1,2,...,n) and S = (1,2).
Factorize o € S,, into the product of L and S with the smallest number
of terms.

@ Diameter of the Cayley graph of S,, using L and S:

So | S3 | Sa|Ss|Se | S7|Ss| So | Sio]| S| Siz2
1 2 6 |11 |18 | 25| 35 | 45 | 58 71| 777
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Cayley graphs

@ The Cayley graph of the the set S,, of permutations using special
generators.

@ It is known that S,, can be generated by L = (1,2,...,n) and S = (1,2).
Factorize o € S,, into the product of L and S with the smallest number
of terms.

@ Diameter of the Cayley graph of S,, using L and S:

So | S3 | Sa|Ss|Se | S7|Ss| So | Sio]| S| Siz2
1 2 6 |11 |18 | 25| 35 | 45 | 58 71| 777

@ Diameter of the Cayley graph of S,, using L, S, and
R=L"'=Mnn-1,...,1):

So | S3 | S84S5 | S6|S7|Ss|Se| S0 S
1|26 |10|15|21 |28 36| 45 | 7?77
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@ Every orthogonal (unitary) matrix P can be written as the product of
orthogonal matrices of the form

I;_
(’1 Q ) with Q € Ma,  j=1,...,n—1.
Ip—j-1
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@ Every orthogonal (unitary) matrix P can be written as the product of
orthogonal matrices of the form

I;_
(’1 Q ) with Q € Ma,  j=1,...,n—1.
Ip—j-1

For n = 4, we need

[SESIETE
cox ¥
or oo
—ooo
coow
o % ¥ O
SRR
—ooo
coo
coro
* ¥ OO
[S)
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Other problems

@ How about the problem associated with the Rubik’s cube?
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Other problems
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@ The study of genomics and mutations, i.e.,
the change of genetic sequences z1x2x3 - -, with z; € {A, U, G, C}.
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Other problems

@ How about the problem associated with the Rubik’s cube?
Find simple moves to restore the Rubik's cube.

@ The study of genomics and mutations, i.e.,
the change of genetic sequences z1x2x3 - -, with z; € {A, U, G, C}.

@ More on Quantum computing.
It is of interest to decompose certain quantum gates into simpler
quantum gates (CNOT gates).
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We can do some more research on the topic!
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We can do some more research on the topic!

Thank you for your attention!
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