The Curry-Howard
Correspondance

WESLEY JENKINS




Proofs

Proofs are common to all of us.

What is a proof¢
A “thing” that somehow shows that a conclusion is true.

Can create a set of proofs that prove some fact:
P(X) = (Set of proofs of X)

Not a set of all proofs, just a set of all proofs for X specifically.



Proofs and Set Theory

Proof ideas need to be rewritten info set theoretic notation
X is true if and only if P(X) is inhabited P(V(n € N) X(n)) = (n: N) — P(X(n))
(has at least one element).

P(X and Y) = P(X) x P(Y)
PXorY)=PX)UP(Y)
P(X impliesY) = P(X) — P(Y)

Given proof of X, this function will return
proof of Y.

Confusing notation

Dependent product type
P(3(n € N)X(n)) = (n:N) X P(X(n))
Dependent sum type

Confusing because it uses a product

The function must be well-defined.



Examples

Proof that if 2 is even, then 4 is also even.
¢ : P(2iseven) — P(4is even)
Given proof that 2 is even, it will return proof that 4 is even.
Proof that all integers are real numbers.
¢:(n:7Z) — P(nisreal)
Given a value like 3, ¢(3) : P(3isreal)
Codomain is the union of all P(n is real).
Only true if such a function can be constructed!
Proof that there exists an integer less than 5
¢p:(n:Z)xXxP(n<5)

Second set depends on a value from the first.



Programming

Everyone is also familiar with programming and programs.
What is a program?

A sequence of steps to perform some computation.
There are many abstract models of computation

Turing machines, lambda calculus, etc.

And many programming languages, which are considered “turing-
complete,”

C++, Python, Java, etc.



Language Typing

Values in most programming languages have “types.”

Equivalent to sets of objects.

Statically-typed languages make requirements on the type of a variable.

Equipped with a type checker, which ensures the types are correct.

Cannot use a value where it is unexpected, e.g. real number in place of integer

Python: Dynamic typing

C++: Static typing

def addvalues(x, Vy):
z =xXx + vy
return z

int addvValues(int x, int y) {
int z = x + y;
return z;




Proof Types

Since P(X) is a set, it could also be used as a type in a programming
language.

The program could then manipulate these “proof objects” to generate
new proof objects.

The static type checker could verify that the proof is correct.

P(2is even) — P(4 is even) proof 4 1s even proveEven (proof 2 is even proof) {
?2?°?

}

But will it work?
No. Why?¢



Type Systems

C++isn’t sufficient
Not a complex enough type system.

Has a lot of “outs” like exceptions and the “exit” function which ends the
program.

Functions aren’t pure (So, not even real mathematical functions).

Not actually strictly typed! Allows casting!

Need a more suitable language.



Agda

Agda is designed for this purpose.

Much more complicated type system.
Hindley-Milner type system with support for dependent types.

All functions are total and pure, meaning there are no escape routes like in
C++.

Can’t create values of any type out of thin air.

Functional language closely related to Haskell.

provekven : proof_2_even -> proof_4_even
provekven proof = ?2?



Automated Proof Checking

Agda programs themselves act as proofs.

The Agda compiler checks the program.

If the Agda compiler accepts the program, then it must be a valid proof.

(Unless there is a bug in the Agda compiler)

data Nat : Set where
zero : Nat
suc : Nat —-> Nat

data == : Nat -> Nat -> Set where
refl : (n : Nat) -> n == n

eqTrans : {nm 1l : Nat} -> n ==m -> m == 1 -> n ==
eqgTrans (refl x) (refl x) = refl x



Proven Programs

Agda programs, after being verified, can be exported to Haskell.

These programs have guaranteed behavior, because their behavior has
been proven already.

Can be used in critical applications where the validity of code is crucial:
nuclear reactors, space probes, etc.

Assuming there are no hardware faults, the program cannot contain bugs.

Can provide certain security guarantees at compile time rather than
runtime.

Buffer overrun checks, array out of bounds checks, etc.
So why aren’t all programs proven?e

Because it's very difficult and time-consuming to write a proven program.



Curry-Howard Correspondence

So, formal logic can be embedded inside of programming.
And type checking can then be used to prove such logic is valid.

The Curry-Howard correspondence states that proof systems and systems
of computation are isomorphic to one another.

They describe the same set of rules in a different way.
And so, this fies fogether computation and logic.
Every valid logical argument can be turned into a runnable program.

And every runnable program can be turned into a logical argument.



And Its Conseguences

There are a lot of consequences of this correspondence.
Unifies certain parts of mathematics and foundational computer science.
Gives new understandings of both proofs and programs.
And creates new methods of creating proofs as programs.

Potential philosophical interpretations on the nature of logic and computation.



Questions?




