
The Curry-Howard 

Correspondance
WESLEY JENKINS



Proofs

 Proofs are common to all of us.

 What is a proof?

 A “thing” that somehow shows that a conclusion is true.

 Can create a set of proofs that prove some fact:

𝑃 𝑋 = (Set of proof𝑠 of X)

 Not a set of all proofs, just a set of all proofs for X specifically.



Proofs and Set Theory

 X is true if and only if P(X) is inhabited 

(has at least one element).

 𝑃 𝑋 and 𝑌 ≅ 𝑃 𝑋 × 𝑃 𝑌

 𝑃 𝑋 or 𝑌 ≅ 𝑃 𝑋 ∪ 𝑃 𝑌

 𝑃 𝑋 implies 𝑌 ≅ 𝑃 𝑋 ⟶ 𝑃 𝑌

 Given proof of X, this function will return 

proof of Y.

 The function must be well-defined.

 𝑃 ∀(𝑛 ∈ 𝑁) 𝑋 𝑛 ≅ (𝑛 ∶ 𝑁) ⟶ 𝑃(𝑋 𝑛 )

 Confusing notation

 Dependent product type

 𝑃 ∃ 𝑛 ∈ 𝑁 𝑋 𝑛 ≅ (𝑛:𝑁) × 𝑃(𝑋 𝑛 )

 Dependent sum type

 Confusing because it uses a product

Proof ideas need to be rewritten into set theoretic notation



Examples

 Proof that if 2 is even, then 4 is also even.

 𝜙 ∶ 𝑃(2 is even) ⟶ 𝑃(4 is even)

 Given proof that 2 is even, it will return proof that 4 is even.

 Proof that all integers are real numbers.

 𝜙 ∶ 𝑛 ∶ ℤ ⟶ 𝑃(𝑛 is real)

 Given a value like 3, 𝜙 3 ∶ 𝑃(3 is real)

 Codomain is the union of all 𝑃(𝑛 is real).

 Only true if such a function can be constructed!

 Proof that there exists an integer less than 5

 𝜙 ∶ 𝑛 ∶ ℤ × 𝑃 𝑛 < 5

 Second set depends on a value from the first.



Programming

 Everyone is also familiar with programming and programs.

 What is a program?

 A sequence of steps to perform some computation.

 There are many abstract models of computation

 Turing machines, lambda calculus, etc.

 And many programming languages, which are considered “turing-

complete,”

 C++, Python, Java, etc.



Language Typing

 Values in most programming languages have “types.”

 Equivalent to sets of objects.

 Statically-typed languages make requirements on the type of a variable.

 Equipped with a type checker, which ensures the types are correct.

 Cannot use a value where it is unexpected, e.g. real number in place of integer

def addValues(x, y):

z = x + y

return z

int addValues(int x, int y) {

int z = x + y;

return z;

}

Python: Dynamic typing C++: Static typing



Proof Types

 Since P(X) is a set, it could also be used as a type in a programming 

language.

 The program could then manipulate these “proof objects” to generate 

new proof objects.

 The static type checker could verify that the proof is correct.

𝑃 2 𝑖𝑠 𝑒𝑣𝑒𝑛 ⟶ 𝑃(4 𝑖𝑠 𝑒𝑣𝑒𝑛) proof_4_is_even proveEven(proof_2_is_even proof) {

???

}

 But will it work?

 No. Why?



Type Systems

 C++ isn’t sufficient

 Not a complex enough type system.

 Has a lot of “outs” like exceptions and the “exit” function which ends the 

program.

 Functions aren’t pure (So, not even real mathematical functions).

 Not actually strictly typed! Allows casting!

 Need a more suitable language.



Agda

 Agda is designed for this purpose.

 Much more complicated type system.

 Hindley-Milner type system with support for dependent types.

 All functions are total and pure, meaning there are no escape routes like in 
C++.

 Can’t create values of any type out of thin air.

 Functional language closely related to Haskell.

proveEven : proof_2_even -> proof_4_even

proveEven proof = ???



Automated Proof Checking

 Agda programs themselves act as proofs.

 The Agda compiler checks the program.

 If the Agda compiler accepts the program, then it must be a valid proof.

 (Unless there is a bug in the Agda compiler)

data Nat : Set where

zero : Nat

suc : Nat -> Nat

data _==_ : Nat -> Nat -> Set where

refl : (n : Nat) -> n == n

eqTrans : {n m l : Nat} -> n == m -> m == l -> n == l

eqTrans (refl x) (refl x) = refl x



Proven Programs

 Agda programs, after being verified, can be exported to Haskell.

 These programs have guaranteed behavior, because their behavior has 
been proven already.

 Can be used in critical applications where the validity of code is crucial: 
nuclear reactors, space probes, etc.

 Assuming there are no hardware faults, the program cannot contain bugs.

 Can provide certain security guarantees at compile time rather than 
runtime.

 Buffer overrun checks, array out of bounds checks, etc.

 So why aren’t all programs proven?

 Because it’s very difficult and time-consuming to write a proven program.



Curry-Howard Correspondence

 So, formal logic can be embedded inside of programming. 

 And type checking can then be used to prove such logic is valid.

 The Curry-Howard correspondence states that proof systems and systems 

of computation are isomorphic to one another.

 They describe the same set of rules in a different way.

 And so, this ties together computation and logic.

 Every valid logical argument can be turned into a runnable program.

 And every runnable program can be turned into a logical argument.



And its Consequences

 There are a lot of consequences of this correspondence.

 Unifies certain parts of mathematics and foundational computer science.

 Gives new understandings of both proofs and programs.

 And creates new methods of creating proofs as programs.

 Potential philosophical interpretations on the nature of logic and computation.



Questions?


