MATH 400: Network Algorithms
Daniel Loumeau

Abstract: Throughout this paper, I will discuss the significance, historical context, and
applications of network algorithms. The algorithms discussed are utilized when navigating
optimization techniques, modern computing, and urban planning. The evolution of network
algorithms is rooted in graph theory. Key concepts include shortest path algorithms, network
flow optimization, and routing protocols. In terms of contemporary applications, network
algorithms have a tangible impact on many different domains, including telecommunications,
transportation logistics, social networking platforms, cloud computing, ...etc. Network
algorithms are used in complex environments. This complexity has grown over time due to a
multitude of factors. As such, there exist potential trends, emergent challenges, and opportunities
that may influence what network algorithms look like in the future.

1. Introduction.

(1.1)  T've taken classes on optimization in the past, and enjoyed applying the mathematical
techniques to real-life problems/exercises. Network algorithms have a large role in optimizing
and allocating infrastructure within complex systems. So when choosing a topic for my
presentation, I considered this a potential subject. After further research, I chose network
algorithms due to their relevance in modern technology and the practical mathematics at their
source. While I only planned on presenting the basics, network algorithms can range from easy
graph traversal to complex optimization problems, making them a great topic for people with
different levels of experience. Further, I thought that this choice aligned with the MATH 400
goal of connecting mathematics from different domains. In regards to networks, it can be easily
seen how math converges with disciplines including computer science, engineering, and urban
planning.

2. Historical Context and Development

(2.1)  The evolution of network algorithms is associated with the development of graph theory.
Mathematicians like Leonhard Euler, who notably covered the Seven Bridges of Konigsberg
problem in 1735, made early contributions to graph theory. Another significant milestone for
network optimization came from Dijkstra's algorithm in 1959. This method was utilized for
finding the shortest path in a graph.

(2.2)  In the 20th century, the growth of network algorithms surged even more with the onset of
the Internet. As the digital landscape continued to grow and grow, there was a need for
controlling online congestion and creating efficient routing paths. As such, network algorithms
held more significance and continued to be developed further as environmental complexity
increased over time.



3. Graph Theory and Algorithm Basics

(3.1) Graphs are made up of vertices (nodes) and edges that indicate some kind of relationship
between them. This magnitude may be distance in time it takes to traverse, physical distance, or
some other kind of metric depending on the context. Graphs can be categorized into many
different groups, but for the sake of simplicity the major subdivisions are as follows:

e Directed Graphs: Graphs where edges have a given direction demonstrating a specific
relationship between nodes. (See Figure 1)

e Weighted Graphs: Graphs where edges have some kind of magnitude between any two
given nodes. (See Figure 1)

e (yclic Graphs: Graphs that contain at least one loop, where it is possible to start at a node
and return to that point without backtracking.

e Connected Graphs: Graphs where there is at least one path between every pair of vertices,
thus making every node reachable.

Undirected & Unweighted Undirected & Weighted

@
o
¢
.
¢

Directed & Unweighted Directed & Weighted

Figure 1.

(3.2) We can label the way algorithms navigate these kinds of graphs into 2 major groups.
First, greedy algorithms make locally optimal choices at each step with the hope of finding a
global optimum. At each node where the algorithm is to make some kind of decision, a greedy
algorithm selects the best possible option without considering future consequences. Because of
this behavior, there are naturally pros and cons. Greedy algorithms are usually simple to employ
and can be computationally efficient. However, there is no back-tracking backing after you
choose a specific route. As such, the global optimum solution is not always guaranteed.
Considering this aspect, greedy algorithms are often chosen when finding the optimal solution is
less of a priority or when an approximation to the optimal solution is sufficient. Some examples



include Dijkstra’s, Prims, and Kruskal's Algorithms. The other major group is Non-greedy
algorithms. These algorithms evaluate multiple options at each step and consider future
consequences before choosing a route or making a decision. With the ability to backtrack, and
explore all available options, the optimal solution is guaranteed. Because of this feature,
non-greedy algorithms are typically more complex and expensive from a computational
standpoint. When accuracy is considered more important for a problem, these algorithms are
generally utilized. Some examples include breadth first search and depth first search algorithms.

(3.3) One of the largest graph theory problems is finding the shortest path between two
vertices. Dijkstra's algorithm, founded by Dutch computer scientist Edsger W. Dijkstra in 1959,
is normally utilized in finding the shortest path in a weighted graph. The algorithm begins at a
source node, selects the next node with the minimum distance from it, sets that node as the
current node, and continuously updates the distances of its neighbors until all nodes have been
visited. The following figure depicts the computational steps to Dijkstra's Algorithm:

Start

l

ign a Assign a
Current Score rﬁ:ide fm Current Score
of Infinity to Unvisited Set of O to the
every node nvisite e Start Node

Set the node Remove the Generate a list
with the lowest Current Node
from the neighbors of the
as the Current Unvisited Set Current

Are there any nodes Select the
left to process for this —Yes g
iteration? next node

No

¥

Does every node in the
Is the Current Node .| Unvisited Set have a
also the Target Node? Current Score of
Infinity?

—MNo,

Yes Yes

Stop. Path Stop. No path
found found

Figure 2.

(3.4) Minimum spanning trees (MSTs) are another fundamental component when considering
network algorithms. MST’s come into play often when dealing with transportation systems.
Algorithms that form these tree structures, seek the subset of edges that connect all nodes in a
graph with the minimum possible total weight. Two algorithms that do such this are Prim's
algorithm and Kruskal's algorithm.

e Prim's Algorithm: This method was initially established by a Czech mathematician
named Vojtéch Jarnik in 1930. 27 years later, computer scientist Robert C. Prim



redeveloped this algorithm in 1957 bearing it a new name. Prim's algorithm starts with an
arbitrary vertex and continuously adds the shortest edge that connects a tree node to a
non-tree node until all nodes are included. Note a node is only added permitting a cycle
won’t be formed in the MST by doing so. This algorithm operates efficiently on dense
graphs with a large number of edges. The following figure depicts the resulting MST on a
simple graph following prim's algorithm starting at arbitrary node 1:

® o—O

B8 Gy BN

Figure 3.

e Kruskal's Algorithm: This method was introduced by Joseph Kruskal in 1956. Kruskal's
algorithm continuously adds the shortest edge to the MST until all nodes are connected,
assuming adding an edge won't form a cycle. This algorithm operates in a simple manner
and 1s often utilized on sparse graphs with a few edges. The following figure depicts the
resulting MST on a simple graph following kruskal’s algorithm starting at arbitrary node
I:



A

N
-
N

Figure 4.

Understanding how MST’s behave under different properties can be vital, as different setups and
edge weights can lead to unique MSTs, affecting overall network performance.

(3.5) Breadth-first search and depth-first search are graph traversal algorithms utilized for
analyzing graphs.

e Breadth-First Search (BFS): BFS explores a graph level by level. The algorithm begins at
an initial node and explores all neighboring nodes before traversing to the next level.

e Depth-First Search (DFS): DFS traverses a route as far as possible along each branch
before backtracking. This kind of technique is used commonly for path finding and
sorting problems.



Breadth
First

Search

(2)
O © ©

Figure 5.

Figure 6.

(3.6) Outside of the traditional algorithms discussed above, network optimization can also be
found in nature, with approaches such as ant colony optimization (ACO) and
Physarum-Polycephalum simulation.

e Ant Colony Optimization (ACO): As ants search for food, they constantly emit
pheromone chemical signals. Over time these scents dissipate. The significance of this is
in relation to the distance of a path leading to food. So a long path leading to food, that
isn't traversed as frequently, will have a weak scent. On the other hand, a shorter path
traversed more frequently, will have a stronger scent. Other ants will recognize this and
ultimately abandon the longer paths over time. This behavior inspired ACO, a
metaheuristic algorithm with the purpose of solving combinatorial optimization
problems. The algorithm was proposed by Marco Dorigo in 1992. It simulates this



behavior of ants and is utilized to find optimal solutions to complex problems such as the
traveling salesman problem and vehicle routing problem.

e Physarum Polycephalum Simulation: In 2010, researchers from Japan and the U.K. fed a
slime mold oat flakes specifically positioned to represent nodes located at the same
vertices as that of the Tokyo railway system. From a simple standpoint, the slime mold
creates a mesh network that refines over time, strengthening important connections while
dropping less important ones. Physarum-Polycephalum replicated a very close model to
the already existing Tokyo system. Other researchers have further created models
inspired by the behavior of Physarum-Polycephalum to optimize networks. Depending on
the context or problem, these models may involve differential equations or other
mathematical formulations to include the growth dynamics of the slime mold and
incorporate them into optimization algorithms.

All the algorithms discussed above are utilized to create efficient and optimal networks. But
there are a lot of factors that can influence how people, resources, or traffic might flow through
such networks. So, I briefly wanted to discuss one branch of mathematics that touches this kind
of behavior, queuing theory. Queuing theory studies the behavior of queues, or waiting lines, and
1s necessary for optimizing resource allocation and system performance in complex systems. It
involves the study of stochastic processes, probability distributions, and mathematical models to
describe the behavior of queues; There are different ways to model the arrival and service of a
queue, and understanding how such a process behaves permits a better analysis of a system's
waiting times, service capacity, and overall utilization. Different methods may include Little's
Law, Erlang's formulas, and various queuing models such as M/M/1, M/M/C, and M/G/1. The
M/M/1 queue is a typical format for a basic queue. In this model, we assume there to be a system
consisting of a single server. The rate of arrivals is then assumed to follow a Poisson Process,
with service having exponential distribution. I wanted to briefly discuss this concept, but I hope
to do more research on this topic perhaps in my next presentation.

4. Future Advancements/Challenges

(4.1) Scalability has been a rising challenge for network algorithms due to the exponential
growth of network infrastructures. With the potential adaptation of IoT devices (Internet of
Things), cloud computing, and edge computing environments, algorithms have to take into
account larger volumes of data traffic and more complicated network environments. Dijkstra's
algorithm is a good example. It will still work on a given graph but when you're dealing with
thousands of potential vertices, the way the algorithm is structured may make it inefficient. A* is
an additional algorithm based on Dijkstra’s that Google maps uses to counter this scalability
issue. Essentially it incorporates the distance from the start node to the current node in addition
to the estimated cost from the current node to the end node. Hence, it’s more efficient in finding
the ideal path when dealing with many scenarios.



(4.2) The adaptation of machine learning (ML) and artificial intelligence (Al) techniques also
presents opportunities for further developing how network algorithms are utilized. With such a
toolkit, future networks may exhibit self-learning and self-optimization. I primarily focused on
urban network design and traffic flow for this presentation, but by leveraging ML/AI techniques
for networks in any kind of field, network algorithms can respond to changing network
conditions, identify incoming threats, and optimize network performance all in real time.
Another concern regarding transportation and network layouts is climate change/environment
sustainability. Future network algorithms may prioritize solutions that minimize carbon
emissions, promote energy-efficient transportation modes, and incorporate green infrastructure
into urban planning initiatives. Future network algorithms may also need to support multi-modal
transportation systems, including not only cars but also public transit, bicycles, pedestrians, and
emerging modes such as electric scooters and drones. It should be noted that these situations are
all potential concerns, so the likelihood that such situations materialize is not 100 percent
guaranteed. Regardless, they are still important considerations and issues to keep in mind when
discussing the future of networks.

5. Conclusion/Reflection

(5.1) As technology continues to develop, network algorithms will remain at the center of
innovation. This paper has discussed the historical context, practical applications, and future
prospects of these algorithms. Their impact on society will continue to be great considering the
role they have in shaping both digital and physical landscapes. I’ve enjoyed doing research on
this topic and presenting in front of my peers. My classmates have given me positive comments
as well as constructive feedback regarding how best to explain this material and where to go
from here. There were suggestions about edge computing and its relation to networks, going
deeper into the nature aspect, expanding on more of the historical context, and specifically
analyzing when and where to use algorithms like prims or kruskal's depending on the context.
I’ve enjoyed learning from my classmates and plan on incorporating this feedback when
planning for my next presentation.



References

Leonard Euler s solution to the Konigsberg Bridge problem. Leonard Euler’s Solution to
the Konigsberg Bridge Problem | Mathematical Association of America. (n.d.).
https://maa.org/press/periodicals/convergence/leonard-eulers-solution-to-the-konigsberg-
bridge-problem#:~:text=this%20famous%20problem.-,Euler’s%20Proof,and%20any%20
number%2001f%20bridges.

Ant colony optimization. Ant Colony Optimization - an overview | ScienceDirect Topics.
(n.d.). https://www.sciencedirect.com/topics/engineering/ant-colony-optimization
ScienceDaily. (2010, January 22). Slime design mimics Tokyo s rail system: Efficient
methods of a slime mold could inform human engineers. ScienceDaily.
https://www.sciencedaily.com/releases/2010/01/100121141051.htm

Singh, S. (2024, March 7). The algorithms behind the working of Google Maps. Medium.
https://medium.com/@sachin.singh.professional/the-algorithms-behind-the-working-of-g
oogle-maps-73¢c379bccIb9#:~:text=Google%20Maps%20essentially%20uses%20two,def
ined%20by%?20edges%20and%20vertices.

Chris, K. (2023, February 14). Prim's algorithm — explained with a pseudocode example.
freeCodeCamp.org.
https://www.freecodecamp.org/news/prims-algorithm-explained-with-pseudocode/
Srivastava, A. (2022, April 6). Kruskal’s algorithm. Medium.

https://srivastaval 703.medium.com/kruskals-algorithm-800eefc7c9el

T&scaron;ernov, K. (2022, February 21). The beginner s guide to queuing theory.
Qminder. https://www.qminder.com/blog/queue-management/queuing-theory-guide/
&#27946;&#20581;&#32724; Hung, C. (2022, September 22). Is BFS/DFS a greedy
algorithm? what's the difference between greedy and heuristic algorithm? Medium.
https://hungchienhsiang. medium.com/is-bfs-dfs-a-greedy-algorithm-whats-the-difference
-between-greedy-and-heuristic-algorithm-8b6b019c43c1#:~:text=The%20term%20%E2
%80%9Cgreedy%20algorithm%E2%80%9D%?20refers,it%20t0%20an%20optimization
%20problem.

Bettilyon, T. E. (2019, May 7). Types of graphs. Medium.
https://medium.com/tebs-lab/types-of-graphs-7f3891303ea8

Gaskins, A. (2020, November 19). Distinguishing BF'S and DFS. Medium.
https://ashley-gaskins.medium.com/distinguishing-bfs-and-dfs-bb413falb0e7

Gaskins, A. (2020, November 19). Distinguishing BFS and DF'S. Medium.
https://ashley-gaskins.medium.com/distinguishing-bfs-and-dfs-bb413falb0e7

Minimum spanning tree tutorials & notes.: Algorithms. HackerEarth. (n.d.).
https://www.hackerearth.com/practice/algorithms/graphs/minimum-spanning-tree/tutorial
/



